Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):m310. doi: 10.1107/S1600536812005922

Aqua­(benzamidato-κN)bis­[3,5-difluoro-2-(pyridin-2-yl)phenyl-κC 1]iridium(III) methanol monosolvate

Songlin Zhang a, Feng Wu a, Yuqiang Ding a,*
PMCID: PMC3297261  PMID: 22412451

Abstract

In the title compound, [Ir(C11H6F2N)2(C7H6NO)(H2O)]·CH3OH, the IrIII ion adopts an octa­hedral geometry, and is coordinated by two 3,5-difluoro-2-(pyridin-2-yl)phenyl ligands, one mol­ecule of water and one benzamidate anion. The two 2-(4,6-difluoro­phen­yl)pyridyl ligands are arranged in a cis-C,C′ and trans-N,N′ fashion. Additionally, there is a bystanding methanol mol­ecule outside the coordination sphere of the IrIII ion. In the crystal, mol­ecules of the title compound are linked by O—H⋯O and O—H⋯N hydrogen bonds. One F atom of each ligand is equally disordered over two sites. The C atom of the solvent molecule is likewise disordered over two sites in a 0.589 (11):0.411 (11) ratio.

Related literature  

For related cyclo­metallated IrIII complexes containing a κ 2-bound benzaminate anion, see: Yang et al. (2011); Wang et al. (2008); Zhang et al. (2011). For the coordination geometry of some homoleptic meridional and heteroleptic iridium(III) complexes, see: Tamayo et al. (2003); Yang et al. (2007); You & Park (2005); Zhang et al. (2011). For the general procedure of preparing a chloride-bridged IrIII dimer, see: Nonoyama (1974).graphic file with name e-68-0m310-scheme1.jpg

Experimental  

Crystal data  

  • [Ir(C11H6F2N)2(C7H6NO)(H2O)]·CH4O

  • M r = 742.74

  • Monoclinic, Inline graphic

  • a = 29.544 (4) Å

  • b = 11.6258 (12) Å

  • c = 20.247 (3) Å

  • β = 129.391 (2)°

  • V = 5374.5 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 223 K

  • 0.34 × 0.25 × 0.24 mm

Data collection  

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.279, T max = 0.378

  • 14977 measured reflections

  • 6122 independent reflections

  • 5277 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.101

  • S = 1.09

  • 6122 reflections

  • 392 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.20 e Å−3

  • Δρmin = −1.18 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005922/br2185sup1.cif

e-68-0m310-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005922/br2185Isup2.hkl

e-68-0m310-Isup2.hkl (299.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N3 0.85 (1) 2.54 (6) 3.029 (7) 117 (6)
O2—H2B⋯O1 0.85 (1) 1.74 (3) 2.560 (6) 161 (7)
O2—H2A⋯N1 0.85 (1) 2.45 (6) 2.960 (6) 119 (6)
O2—H2A⋯O1i 0.85 (1) 1.97 (4) 2.700 (7) 142 (6)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the National Natural Science Foundation of China (NNSFC grant No. 20971058) and the Fundamental Research Funds for the Central Universities (grant No. JUSRP 11105) for financial support.

supplementary crystallographic information

Comment

The title compound was obtained unexpectedly during our study on the preparation of bis(2-(4,6-difluorophenyl)pyridyl)iridium(III) κ2-benzamidate complex. Ancillary κ2-amidate ligands have been shown to have a great influence on the photophysical and electrochemical properties of cyclometalated Ir(III) complexes (Yang et al., 2011; Wang et al., 2008). We have synthesized several such bis(2-(4,6-difluorophenyl)pyridyl)iridium(III) κ2-amidate complexes, in all of which, there is a substitutent on the amide nitrogen atom (Zhang et al., 2011). When benzamide lacking a substituent on the amide nitrogen atom was subjected to the reaction condition for the preparation of Ir(III) κ2-amidate complexes, an unexpected Ir(III) complex with a N-bound benzamidate ligand and an O-bound water ligand, i.e., the title compound, was obtained. As shown in Fig. 1, the iridium center adopts an octahedral geometry. The two 2-(4,6-difluorophenyl)pyridyl ligands are arranged in a cis-C, C' and trans-N, N' fashion, which have already been observed in some homoleptic meridional iridium(III) complexes (Tamayo et al., 2003) and also some heteroleptic iridium(III) complexes (Yang et al., 2007; You & Park, 2005; Zhang et al., 2011). The remaining two coordination sites were occupied by benzamidate nitrogen atom and water oxygen atom, respectively. The methanol molecule outside the coordination sphere of the Ir center should result from the deprotonation of the benzamide ligand by the intermediate Ir-OMe complex, which is generated by reaction of chloro-bridged Ir(III) dimer with sodium methoxide. However, there is still some uncertainties about the nature of the bystanding solvent molecule or how it is arranged. In the crystal, there should be intermolecular hydrogen bonds, such as O-H-O and N-H-O, as shown by Fig. 2.

Experimental

Into a Schlenk tube containing chloro-bridged bis(2-(4,6-difluorophenyl)pyridyl) Ir(III) dimer (1 eq.), benzamide (2.5 eq.) and sodium methoxide (10 eq.) was added dichloromethane solvent under dinitrogen. The chloro-bridged Ir(III) dimer was obtained by reaction of IrCl3.3H2O with 2-(4,6-difluorophenyl)pyridine ligand in ethoxyethanol solvent under dinitrogen atmosphere according to the general procedure reported by Nonoyama (1974). The mixture was stirred for 48 h at room temperature, resulting in the formation of an orange solution. The CH2Cl2 solvent in the crude product mixture was then evaporated and the residue was then washed by dried ether. The crystal of the title compound was obtained by recrystallization of the solid in CH2Cl2/cyclohexane mixed solvent.

Refinement

Hydrogen atoms bound to carbon atoms were positioned geometrically with C—H = 0.93 Å or 0.96 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). Hydrogen atoms bound to nitrogen and oxygen atoms were located in difference maps and refined subject to a restraint of N—H = 0.87 (2) Å and O—H = 0.85 (2) Å respectively. The methanol molecule in the crystal should come from the deprotonation of benzamide ligand by intermediate Ir(III)-OMe complex, which is supposed to be generated by transmetalation of chloro-bridged Ir(III) dimer with added sodium methoxide. Due to the disorder of the methanol molecule, the positions of hydrogen atoms on methanol are difficult to determine. Furthermore, this would lead to some disorder in the positions of fluorine atoms on the phenyl ring because there should be some interaction between the methanol hydrogen atoms with the fluorine atoms. This is believed to be the most probable structure of the title compound.

Figures

Fig. 1.

Fig. 1.

Molecular drawing of the title compound at 30% probability level. Hydrogen atoms are omitted for clarity. There are some disorder for the two fluorine atoms bound to C9 and C18 of phenyl rings.

Fig. 2.

Fig. 2.

Hydrogen bonding.

Crystal data

[Ir(C11H6F2N)2(C7H6NO)(H2O)]·CH4O F(000) = 2960
Mr = 742.74 Dx = 1.846 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2yc Cell parameters from 11541 reflections
a = 29.544 (4) Å θ = 3.1–27.5°
b = 11.6258 (12) Å µ = 5.04 mm1
c = 20.247 (3) Å T = 223 K
β = 129.391 (2)° Block, yellow
V = 5374.5 (12) Å3 0.34 × 0.25 × 0.24 mm
Z = 8

Data collection

Rigaku Saturn diffractometer 6122 independent reflections
Radiation source: fine-focus sealed tube 5277 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 14.63 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −38→30
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −15→12
Tmin = 0.279, Tmax = 0.378 l = −21→26
14977 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0407P)2 + 26.4741P] where P = (Fo2 + 2Fc2)/3
6122 reflections (Δ/σ)max = 0.002
392 parameters Δρmax = 1.20 e Å3
4 restraints Δρmin = −1.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ir1 0.347048 (9) 0.650175 (18) −0.014534 (14) 0.03168 (9)
F1 0.4503 (2) 1.0543 (4) 0.0772 (3) 0.0836 (15)
F2 0.3963 (8) 0.9191 (12) −0.1797 (9) 0.054 (4) 0.50
F2A 0.4011 (16) 0.913 (3) −0.175 (2) 0.170 (12) 0.50
F3 0.438 (3) 0.306 (5) −0.067 (4) 0.073 (8) 0.50
F3A 0.451 (3) 0.326 (5) −0.049 (4) 0.089 (12) 0.50
F4 0.5660 (2) 0.4827 (5) 0.2118 (4) 0.0969 (18)
O1 0.22923 (18) 0.5920 (4) −0.0254 (3) 0.0452 (11)
O2 0.26439 (19) 0.7445 (4) −0.0750 (3) 0.0416 (10)
H2A 0.279 (3) 0.774 (6) −0.027 (2) 0.050*
H2B 0.249 (3) 0.688 (4) −0.070 (5) 0.050*
N1 0.3828 (2) 0.7418 (4) 0.0941 (3) 0.0371 (11)
N2 0.3159 (2) 0.5635 (4) −0.1235 (3) 0.0385 (11)
N3 0.3141 (2) 0.5160 (4) 0.0160 (3) 0.0368 (11)
H3 0.3352 0.4537 0.0359 0.044*
C1 0.3830 (3) 0.7075 (6) 0.1581 (4) 0.0487 (16)
H1 0.3678 0.6348 0.1550 0.058*
C2 0.4049 (3) 0.7770 (8) 0.2280 (5) 0.063 (2)
H2 0.4051 0.7507 0.2720 0.076*
C3 0.4262 (3) 0.8823 (8) 0.2333 (5) 0.063 (2)
H3A 0.4402 0.9305 0.2801 0.075*
C4 0.4271 (3) 0.9189 (6) 0.1684 (4) 0.0505 (17)
H4 0.4421 0.9918 0.1713 0.061*
C5 0.4058 (3) 0.8471 (5) 0.1000 (4) 0.0402 (14)
C6 0.4042 (3) 0.8707 (5) 0.0273 (4) 0.0382 (13)
C7 0.4257 (3) 0.9693 (6) 0.0165 (4) 0.0493 (16)
C8 0.4244 (3) 0.9879 (6) −0.0520 (5) 0.0551 (18)
H8 0.4395 1.0551 −0.0575 0.066*
C9 0.3994 (3) 0.9010 (7) −0.1115 (5) 0.0535 (18)
C10 0.3775 (3) 0.8013 (6) −0.1057 (4) 0.0411 (14)
H10 0.3616 0.7445 −0.1482 0.049*
C11 0.3791 (2) 0.7851 (5) −0.0359 (4) 0.0331 (12)
C12 0.2627 (3) 0.5836 (6) −0.1998 (4) 0.0524 (17)
H12 0.2385 0.6403 −0.2034 0.063*
C13 0.2430 (4) 0.5236 (7) −0.2718 (5) 0.070 (2)
H13 0.2058 0.5387 −0.3242 0.084*
C14 0.2788 (5) 0.4403 (8) −0.2660 (6) 0.078 (3)
H14 0.2661 0.3972 −0.3143 0.093*
C15 0.3329 (4) 0.4215 (7) −0.1894 (6) 0.069 (2)
H15 0.3578 0.3667 −0.1856 0.083*
C16 0.3516 (3) 0.4824 (6) −0.1166 (5) 0.0498 (17)
C17 0.4074 (3) 0.4732 (6) −0.0308 (5) 0.0468 (16)
C18 0.4528 (4) 0.3966 (7) −0.0035 (6) 0.063 (2)
C19 0.5056 (4) 0.3973 (7) 0.0764 (7) 0.072 (3)
H19 0.5354 0.3450 0.0929 0.086*
C20 0.5129 (3) 0.4784 (7) 0.1314 (6) 0.065 (2)
C21 0.4706 (3) 0.5553 (6) 0.1116 (5) 0.0520 (17)
H21 0.4780 0.6080 0.1527 0.062*
C22 0.4169 (3) 0.5537 (5) 0.0303 (4) 0.0408 (14)
C23 0.2672 (2) 0.5124 (5) 0.0096 (4) 0.0353 (13)
C24 0.2570 (3) 0.4127 (5) 0.0461 (4) 0.0359 (13)
C25 0.2003 (3) 0.3869 (6) 0.0129 (5) 0.0505 (16)
H25 0.1690 0.4317 −0.0319 0.061*
C26 0.1894 (4) 0.2950 (7) 0.0454 (6) 0.065 (2)
H26 0.1507 0.2774 0.0221 0.078*
C27 0.2346 (4) 0.2312 (7) 0.1105 (6) 0.063 (2)
H27 0.2271 0.1691 0.1321 0.076*
C28 0.2916 (4) 0.2567 (7) 0.1455 (5) 0.062 (2)
H28 0.3227 0.2124 0.1908 0.075*
C29 0.3025 (3) 0.3481 (6) 0.1133 (5) 0.0506 (17)
H29 0.3413 0.3661 0.1376 0.061*
O3 0.44588 (19) 0.2099 (4) 0.2396 (3) 0.0543 (12)
C30 0.4370 (5) 0.2603 (9) 0.1702 (7) 0.0543 (12) 0.589 (11)
C30A 0.4817 (6) 0.2785 (10) 0.2269 (12) 0.0543 (12) 0.411 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.03266 (13) 0.03359 (13) 0.03432 (13) 0.00037 (10) 0.02386 (11) 0.00088 (10)
F1 0.097 (4) 0.068 (3) 0.087 (3) −0.037 (3) 0.059 (3) −0.021 (3)
F2 0.087 (10) 0.054 (6) 0.046 (6) −0.033 (7) 0.054 (7) −0.011 (5)
F2A 0.18 (3) 0.22 (3) 0.18 (2) −0.02 (2) 0.15 (2) 0.03 (2)
F3 0.10 (2) 0.048 (10) 0.11 (2) −0.003 (11) 0.09 (2) −0.026 (12)
F3A 0.10 (2) 0.07 (2) 0.11 (2) 0.010 (16) 0.07 (2) −0.021 (15)
F4 0.047 (3) 0.089 (4) 0.114 (4) 0.020 (3) 0.032 (3) 0.024 (3)
O1 0.038 (2) 0.042 (2) 0.063 (3) 0.004 (2) 0.035 (2) 0.006 (2)
O2 0.037 (2) 0.046 (3) 0.047 (2) 0.004 (2) 0.029 (2) 0.009 (2)
N1 0.033 (3) 0.044 (3) 0.034 (3) 0.002 (2) 0.021 (2) −0.001 (2)
N2 0.045 (3) 0.039 (3) 0.043 (3) −0.009 (2) 0.033 (3) −0.001 (2)
N3 0.039 (3) 0.035 (3) 0.043 (3) 0.002 (2) 0.029 (2) 0.003 (2)
C1 0.053 (4) 0.059 (4) 0.040 (3) −0.005 (3) 0.033 (3) −0.002 (3)
C2 0.061 (5) 0.081 (6) 0.051 (4) −0.013 (4) 0.037 (4) −0.018 (4)
C3 0.051 (4) 0.089 (6) 0.046 (4) −0.005 (4) 0.031 (4) −0.023 (4)
C4 0.044 (4) 0.050 (4) 0.056 (4) −0.007 (3) 0.031 (3) −0.013 (3)
C5 0.030 (3) 0.045 (3) 0.040 (3) 0.005 (3) 0.020 (3) −0.002 (3)
C6 0.033 (3) 0.039 (3) 0.039 (3) 0.002 (3) 0.021 (3) −0.001 (3)
C7 0.040 (3) 0.046 (4) 0.054 (4) −0.013 (3) 0.026 (3) −0.010 (3)
C8 0.051 (4) 0.052 (4) 0.068 (5) −0.011 (3) 0.040 (4) 0.002 (4)
C9 0.061 (4) 0.060 (4) 0.056 (4) −0.010 (4) 0.045 (4) 0.005 (4)
C10 0.046 (4) 0.045 (3) 0.045 (3) −0.003 (3) 0.035 (3) 0.004 (3)
C11 0.027 (3) 0.036 (3) 0.038 (3) 0.005 (2) 0.022 (3) 0.005 (3)
C12 0.057 (4) 0.055 (4) 0.043 (4) −0.014 (4) 0.031 (4) −0.003 (3)
C13 0.093 (6) 0.065 (5) 0.045 (4) −0.033 (5) 0.041 (5) −0.011 (4)
C14 0.121 (8) 0.071 (6) 0.065 (5) −0.043 (6) 0.070 (6) −0.036 (5)
C15 0.106 (7) 0.061 (5) 0.084 (6) −0.014 (5) 0.082 (6) −0.017 (5)
C16 0.072 (5) 0.042 (4) 0.068 (5) −0.010 (3) 0.059 (4) −0.007 (3)
C17 0.051 (4) 0.047 (4) 0.070 (4) 0.002 (3) 0.051 (4) 0.002 (3)
C18 0.081 (6) 0.045 (4) 0.108 (7) 0.003 (4) 0.081 (6) −0.003 (5)
C19 0.057 (5) 0.058 (5) 0.113 (8) 0.023 (4) 0.060 (6) 0.024 (5)
C20 0.040 (4) 0.059 (5) 0.081 (6) 0.009 (4) 0.032 (4) 0.021 (4)
C21 0.040 (4) 0.050 (4) 0.065 (4) −0.001 (3) 0.033 (4) 0.003 (4)
C22 0.040 (3) 0.037 (3) 0.062 (4) 0.000 (3) 0.040 (3) 0.005 (3)
C23 0.035 (3) 0.037 (3) 0.036 (3) −0.007 (3) 0.024 (3) −0.008 (3)
C24 0.047 (3) 0.032 (3) 0.041 (3) −0.005 (3) 0.034 (3) −0.003 (3)
C25 0.051 (4) 0.052 (4) 0.056 (4) −0.007 (3) 0.037 (4) −0.004 (3)
C26 0.090 (6) 0.051 (4) 0.091 (6) −0.026 (5) 0.075 (6) −0.017 (5)
C27 0.104 (7) 0.044 (4) 0.077 (5) −0.013 (4) 0.073 (6) −0.002 (4)
C28 0.087 (6) 0.057 (4) 0.057 (4) 0.007 (4) 0.053 (5) 0.013 (4)
C29 0.057 (4) 0.052 (4) 0.050 (4) 0.002 (3) 0.038 (4) 0.005 (3)
O3 0.036 (2) 0.031 (2) 0.092 (3) 0.0002 (17) 0.038 (2) −0.017 (2)
C30 0.036 (2) 0.031 (2) 0.092 (3) 0.0002 (17) 0.038 (2) −0.017 (2)
C30A 0.036 (2) 0.031 (2) 0.092 (3) 0.0002 (17) 0.038 (2) −0.017 (2)

Geometric parameters (Å, º)

Ir1—C22 1.991 (6) C9—C10 1.367 (9)
Ir1—C11 2.016 (6) C10—C11 1.397 (8)
Ir1—N1 2.035 (5) C10—H10 0.9400
Ir1—N2 2.038 (5) C12—C13 1.370 (10)
Ir1—N3 2.127 (5) C12—H12 0.9400
Ir1—O2 2.207 (4) C13—C14 1.383 (13)
F1—C7 1.371 (8) C13—H13 0.9400
F2—C9 1.340 (15) C14—C15 1.364 (13)
F2A—C9 1.33 (3) C14—H14 0.9400
F3—C18 1.49 (4) C15—C16 1.395 (10)
F3A—C18 1.21 (5) C15—H15 0.9400
F4—C20 1.368 (9) C16—C17 1.454 (10)
O1—C23 1.268 (7) C17—C18 1.398 (10)
O2—H2A 0.854 (10) C17—C22 1.429 (9)
O2—H2B 0.849 (10) C18—C19 1.360 (12)
N1—C1 1.353 (8) C19—C20 1.368 (12)
N1—C5 1.368 (8) C19—H19 0.9400
N2—C12 1.353 (8) C20—C21 1.374 (10)
N2—C16 1.353 (8) C21—C22 1.383 (9)
N3—C23 1.309 (7) C21—H21 0.9400
N3—H3 0.8700 C23—C24 1.504 (8)
C1—C2 1.382 (10) C24—C29 1.379 (9)
C1—H1 0.9400 C24—C25 1.384 (9)
C2—C3 1.350 (12) C25—C26 1.397 (10)
C2—H2 0.9400 C25—H25 0.9400
C3—C4 1.397 (10) C26—C27 1.356 (12)
C3—H3A 0.9400 C26—H26 0.9400
C4—C5 1.380 (9) C27—C28 1.382 (11)
C4—H4 0.9400 C27—H27 0.9400
C5—C6 1.470 (9) C28—C29 1.388 (10)
C6—C7 1.392 (9) C28—H28 0.9400
C6—C11 1.404 (8) C29—H29 0.9400
C7—C8 1.379 (10) O3—C30 1.387 (9)
C8—C9 1.374 (10) O3—C30A 1.472 (9)
C8—H8 0.9400
C22—Ir1—C11 92.5 (2) C10—C11—Ir1 127.1 (5)
C22—Ir1—N1 97.2 (2) C6—C11—Ir1 113.8 (4)
C11—Ir1—N1 80.3 (2) N2—C12—C13 121.9 (8)
C22—Ir1—N2 80.8 (2) N2—C12—H12 119.1
C11—Ir1—N2 95.9 (2) C13—C12—H12 119.1
N1—Ir1—N2 175.72 (19) C12—C13—C14 118.7 (8)
C22—Ir1—N3 89.3 (2) C12—C13—H13 120.6
C11—Ir1—N3 175.3 (2) C14—C13—H13 120.6
N1—Ir1—N3 95.12 (19) C15—C14—C13 119.4 (7)
N2—Ir1—N3 88.66 (18) C15—C14—H14 120.3
C22—Ir1—O2 174.2 (2) C13—C14—H14 120.3
C11—Ir1—O2 90.00 (19) C14—C15—C16 120.8 (8)
N1—Ir1—O2 88.38 (18) C14—C15—H15 119.6
N2—Ir1—O2 93.72 (19) C16—C15—H15 119.6
N3—Ir1—O2 88.65 (17) N2—C16—C15 119.0 (7)
Ir1—O2—H2A 90 (5) N2—C16—C17 113.2 (6)
Ir1—O2—H2B 92 (5) C15—C16—C17 127.8 (7)
H2A—O2—H2B 95 (7) C18—C17—C22 117.6 (7)
C1—N1—C5 118.7 (5) C18—C17—C16 126.5 (7)
C1—N1—Ir1 124.4 (4) C22—C17—C16 115.9 (6)
C5—N1—Ir1 116.8 (4) F3A—C18—C19 112 (3)
C12—N2—C16 120.2 (6) F3A—C18—C17 124 (3)
C12—N2—Ir1 123.3 (5) C19—C18—C17 123.7 (8)
C16—N2—Ir1 116.5 (4) F3A—C18—F3 11 (5)
C23—N3—Ir1 130.2 (4) C19—C18—F3 121 (3)
C23—N3—H3 114.9 C17—C18—F3 115 (3)
Ir1—N3—H3 114.9 C18—C19—C20 116.3 (7)
N1—C1—C2 121.5 (7) C18—C19—H19 121.9
N1—C1—H1 119.3 C20—C19—H19 121.9
C2—C1—H1 119.3 C19—C20—F4 117.6 (7)
C3—C2—C1 120.3 (7) C19—C20—C21 124.5 (8)
C3—C2—H2 119.9 F4—C20—C21 117.9 (8)
C1—C2—H2 119.9 C20—C21—C22 118.8 (7)
C2—C3—C4 119.2 (7) C20—C21—H21 120.6
C2—C3—H3A 120.4 C22—C21—H21 120.6
C4—C3—H3A 120.4 C21—C22—C17 119.1 (6)
C5—C4—C3 119.4 (7) C21—C22—Ir1 127.5 (5)
C5—C4—H4 120.3 C17—C22—Ir1 113.4 (5)
C3—C4—H4 120.3 O1—C23—N3 122.5 (5)
N1—C5—C4 120.9 (6) O1—C23—C24 117.1 (5)
N1—C5—C6 112.4 (5) N3—C23—C24 120.4 (5)
C4—C5—C6 126.7 (6) C29—C24—C25 118.9 (6)
C7—C6—C11 118.1 (6) C29—C24—C23 122.1 (6)
C7—C6—C5 125.6 (6) C25—C24—C23 119.0 (6)
C11—C6—C5 116.3 (5) C24—C25—C26 120.5 (7)
F1—C7—C8 116.6 (6) C24—C25—H25 119.8
F1—C7—C6 119.2 (6) C26—C25—H25 119.8
C8—C7—C6 124.1 (6) C27—C26—C25 119.8 (8)
C9—C8—C7 115.0 (6) C27—C26—H26 120.1
C9—C8—H8 122.5 C25—C26—H26 120.1
C7—C8—H8 122.5 C26—C27—C28 120.6 (7)
F2A—C9—F2 6 (2) C26—C27—H27 119.7
F2A—C9—C10 118.9 (16) C28—C27—H27 119.7
F2—C9—C10 119.5 (8) C27—C28—C29 119.7 (8)
F2A—C9—C8 116.3 (16) C27—C28—H28 120.2
F2—C9—C8 115.9 (8) C29—C28—H28 120.2
C10—C9—C8 124.6 (7) C24—C29—C28 120.5 (7)
C9—C10—C11 119.1 (6) C24—C29—H29 119.7
C9—C10—H10 120.4 C28—C29—H29 119.7
C11—C10—H10 120.4 C30—O3—C30A 44.6 (8)
C10—C11—C6 119.0 (5) C30Ai—C30A—O3 111 (2)
C22—Ir1—N1—C1 −86.8 (5) O2—Ir1—N1—C1 91.6 (5)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2B···N3 0.85 (1) 2.54 (6) 3.029 (7) 117 (6)
O2—H2B···O1 0.85 (1) 1.74 (3) 2.560 (6) 161 (7)
O2—H2A···N1 0.85 (1) 2.45 (6) 2.960 (6) 119 (6)
O2—H2A···O1ii 0.85 (1) 1.97 (4) 2.700 (7) 142 (6)

Symmetry code: (ii) −x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2185).

References

  1. Jacobson, R. (1998). REQAB Private communication to Rigaku Corporation, Tokyo, Japan.
  2. Nonoyama, M. (1974). Bull. Chem. Soc. Jpn, 47, 767–768.
  3. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S. L., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377–7387. [DOI] [PubMed]
  6. Wang, W., Zhu, T., Chen, G., Li, C., Di, H., Ren, C. & Ding, Y. (2008). Synth. Met. 158, 1022–1027.
  7. Yang, C. H., Cheng, Y. M., Chi, Y., Hsu, C. J., Fang, F. C., Wong, K. T., Chou, P. T., Chang, C. H., Tsai, M. H. & Wu, C. C. (2007). Angew. Chem. Int. Ed. 46, 2418–2421. [DOI] [PubMed]
  8. Yang, W., Fu, H., Song, Q., Zhang, M. & Ding, Y. (2011). Organometallics, 30, 77–83.
  9. You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438–12439. [DOI] [PubMed]
  10. Zhang, S., Wu, F., Yang, W. & Ding, Y. (2011). Inorg. Chem. Commun. 14, 1414–1417.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005922/br2185sup1.cif

e-68-0m310-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005922/br2185Isup2.hkl

e-68-0m310-Isup2.hkl (299.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES