Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 24;68(Pt 3):m311. doi: 10.1107/S1600536812006204

Dichlorido{2-[(2,6-dimethyl­phen­yl)imino­meth­yl]pyridine-κ2 N,N′}zinc

Xue-hong Liu a, Li-min Zhao a,*, Feng-shou Liu a
PMCID: PMC3297262  PMID: 22412452

Abstract

In the asymmetric unit of the title compound, [ZnCl2(C14H14N2)], the central ZnII ion is four-coordinated in a distorted tetra­hedral environment by two N atoms of the ligand 2-[(2,6-dimethyl­phen­yl)imino­meth­yl]pyridine and two chloride anions. In the crystal, adjacent mol­ecules are connected through C—H⋯Cl hydrogen bonds between a C—H group of the ligand and a Cl anion, leading to a chain-like structure along the b direction.

Related literature  

For related structures, see: Roy et al. (2011); Shi et al. (2010); Talei Bavil Olyai et al. (2008); Schulz et al. (2009); Hathwar et al.. (2010).graphic file with name e-68-0m311-scheme1.jpg

Experimental  

Crystal data  

  • [ZnCl2(C14H14N2)]

  • M r = 346.54

  • Monoclinic, Inline graphic

  • a = 14.360 (4) Å

  • b = 8.222 (2) Å

  • c = 13.176 (4) Å

  • β = 105.770 (3)°

  • V = 1497.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 296 K

  • 0.80 × 0.60 × 0.60 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.300, T max = 0.382

  • 7309 measured reflections

  • 2620 independent reflections

  • 2099 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.071

  • S = 1.01

  • 2620 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812006204/zj2055sup1.cif

e-68-0m311-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006204/zj2055Isup2.hkl

e-68-0m311-Isup2.hkl (128.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl1i 0.93 2.95 3.762 (3) 147
C6—H6⋯Cl1i 0.93 2.85 3.675 (3) 148
C1—H1⋯Cl2ii 0.93 2.93 3.684 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (grant No. 21004014) for financial support.

supplementary crystallographic information

Comment

Recently, the bidentate [N, N] ligand such as pyridineimine have drawn much attention owing to their valuable applications in the fields of catalysis, conjugated organic devices. These bidentate ligands can be modified by tuning the substituents. Therefore, different steric and electronic properties are achieved easily. Various zinc metal complexes (Roy et al. 2011; Shi et al. 2010; Talei Bavil Olyai et al. 2008; Schulz et al. 2009) have been developed. In order to enrich this family type of compounds, we report the single-crystal growth and structure investigation of title compound [Zn(C14H14N2)Cl2].

The molecular structure of the compound is shown in Fig. 1. The solid-state structure showed a distorted tetrahedral coordinate geometry formed by two N atoms from the ligand 2,6-dimethyl-N-(pyridine-2-ylmethylene)aniline and two chloride atoms, with the Zn—N distances of 2.071 (2) and 2.078 (2) Å and the Zn—Cl distances of 2.1972 (10) and 2.2135 (11) Å. On an over view (Fig. 2), the adjacent molecules were connected through the C—H···Cl inter-molecule hydrogen bonds between the C—H group of the ligand and the Cl atom, leading to a one-dimensional chain-like structure.

Experimental

A mixture of picolinaldehyde (0.0535 g, 0.5 mmol) and 2,6-dimethylaniline (0.0606 g, 0.5 mmol) was refluxed in CH3OH (20 ml) for 2 h, ZnCl2 (0.0682 g, 0.5 mmol) was added and refluxed for another 30 min, then cooled to the room temperature gradually, yellow precipitates were obtained at this time, which were dissolved in the solution of DMSO (5 ml) and CH3OH (3 ml). After the evaporation process at room temperature for about 12 d, yellow crystals were got.

Refinement

X-ray data were collected on a APEX2 (Bruker, 2001).Semi-empirical absorption corrections were made using SADABS. The structures were solved using direct methods, followed by full matrix least-squares refinement against F2 (all data) using SHELXTL. Anisotropic refinement for all ordered non-H atoms; organic H atoms were placed in calculated positions.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound drawn with 50% ellipsoidal probability.

Fig. 2.

Fig. 2.

The one-dimensional chain-like structure connected through the C—H···Cl inter-molecule hydrogen bonds.

Crystal data

[ZnCl2(C14H14N2)] F(000) = 704
Mr = 346.54 Dx = 1.538 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.360 (4) Å Cell parameters from 2535 reflections
b = 8.222 (2) Å θ = 2.9–25.3°
c = 13.176 (4) Å µ = 1.98 mm1
β = 105.770 (3)° T = 296 K
V = 1497.0 (7) Å3 Block, yellow
Z = 4 0.80 × 0.60 × 0.60 mm

Data collection

Bruker APEXII CCD diffractometer 2620 independent reflections
Radiation source: fine-focus sealed tube 2099 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
φ and ω scans θmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −16→17
Tmin = 0.300, Tmax = 0.382 k = −8→9
7309 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.7932P] where P = (Fo2 + 2Fc2)/3
2620 reflections (Δ/σ)max = 0.002
174 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.30152 (2) 0.11718 (4) 0.46883 (3) 0.03949 (12)
C1 0.50567 (19) 0.2130 (4) 0.6054 (2) 0.0479 (7)
H1 0.5253 0.1072 0.5970 0.058*
C2 0.5729 (2) 0.3225 (4) 0.6611 (3) 0.0543 (8)
H2 0.6364 0.2901 0.6916 0.065*
C3 0.5449 (2) 0.4803 (4) 0.6712 (2) 0.0526 (8)
H3 0.5897 0.5568 0.7066 0.063*
C4 0.4498 (2) 0.5235 (4) 0.6283 (2) 0.0458 (7)
H4 0.4291 0.6294 0.6344 0.055*
C5 0.38552 (19) 0.4066 (3) 0.5760 (2) 0.0354 (6)
C6 0.28131 (19) 0.4390 (3) 0.5312 (2) 0.0365 (6)
H6 0.2565 0.5420 0.5373 0.044*
C7 0.12475 (18) 0.3613 (3) 0.4352 (2) 0.0347 (6)
C8 0.05578 (19) 0.2822 (3) 0.4741 (2) 0.0384 (7)
C9 −0.0408 (2) 0.3138 (4) 0.4244 (3) 0.0489 (8)
H9 −0.0886 0.2641 0.4490 0.059*
C10 −0.0669 (2) 0.4178 (4) 0.3393 (3) 0.0545 (9)
H10 −0.1320 0.4373 0.3069 0.065*
C11 0.0025 (2) 0.4922 (4) 0.3023 (2) 0.0490 (8)
H11 −0.0163 0.5613 0.2445 0.059*
C12 0.10028 (19) 0.4669 (3) 0.3492 (2) 0.0394 (7)
C13 0.1757 (2) 0.5507 (4) 0.3071 (2) 0.0546 (8)
H13A 0.2012 0.6425 0.3508 0.082*
H13B 0.1466 0.5870 0.2363 0.082*
H13C 0.2270 0.4759 0.3073 0.082*
C14 0.0848 (2) 0.1719 (4) 0.5686 (3) 0.0541 (8)
H14A 0.1171 0.0778 0.5514 0.081*
H14B 0.0282 0.1386 0.5885 0.081*
H14C 0.1278 0.2290 0.6261 0.081*
Cl1 0.28638 (6) −0.11449 (9) 0.54595 (8) 0.0664 (3)
Cl2 0.31417 (6) 0.11215 (10) 0.30514 (6) 0.0610 (2)
N1 0.41315 (14) 0.2537 (3) 0.56299 (17) 0.0372 (5)
N2 0.22550 (14) 0.3265 (2) 0.48443 (16) 0.0319 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.03867 (19) 0.02821 (18) 0.0486 (2) 0.00313 (14) 0.00686 (15) −0.00420 (15)
C1 0.0391 (16) 0.0441 (18) 0.058 (2) 0.0072 (14) 0.0085 (14) 0.0018 (15)
C2 0.0352 (16) 0.062 (2) 0.060 (2) −0.0025 (15) 0.0026 (15) 0.0056 (17)
C3 0.0437 (18) 0.055 (2) 0.054 (2) −0.0138 (15) 0.0047 (15) −0.0060 (16)
C4 0.0460 (17) 0.0403 (17) 0.0492 (19) −0.0061 (14) 0.0099 (14) −0.0073 (14)
C5 0.0373 (14) 0.0338 (15) 0.0341 (15) −0.0008 (12) 0.0080 (12) 0.0007 (12)
C6 0.0402 (15) 0.0283 (14) 0.0409 (16) 0.0049 (12) 0.0106 (13) −0.0023 (12)
C7 0.0337 (14) 0.0268 (14) 0.0408 (16) 0.0025 (11) 0.0055 (12) −0.0067 (12)
C8 0.0415 (16) 0.0264 (14) 0.0473 (17) −0.0014 (12) 0.0121 (13) −0.0112 (12)
C9 0.0374 (16) 0.0419 (17) 0.069 (2) −0.0048 (14) 0.0172 (15) −0.0166 (16)
C10 0.0353 (16) 0.053 (2) 0.066 (2) 0.0099 (15) −0.0012 (15) −0.0161 (17)
C11 0.0480 (18) 0.0470 (18) 0.0459 (19) 0.0127 (15) 0.0023 (15) −0.0020 (14)
C12 0.0409 (15) 0.0358 (15) 0.0393 (17) 0.0070 (13) 0.0072 (13) −0.0034 (13)
C13 0.0586 (19) 0.0528 (19) 0.052 (2) 0.0047 (16) 0.0135 (16) 0.0106 (16)
C14 0.0572 (19) 0.0446 (17) 0.066 (2) −0.0003 (15) 0.0270 (17) 0.0063 (16)
Cl1 0.0729 (6) 0.0314 (4) 0.0953 (7) 0.0023 (4) 0.0236 (5) 0.0090 (4)
Cl2 0.0668 (5) 0.0669 (5) 0.0487 (5) 0.0093 (4) 0.0148 (4) −0.0096 (4)
N1 0.0327 (12) 0.0325 (12) 0.0436 (14) 0.0044 (10) 0.0057 (10) 0.0014 (10)
N2 0.0330 (11) 0.0275 (11) 0.0346 (12) 0.0026 (10) 0.0082 (10) −0.0005 (10)

Geometric parameters (Å, º)

Zn1—N1 2.071 (2) C7—C12 1.394 (4)
Zn1—N2 2.078 (2) C7—N2 1.444 (3)
Zn1—Cl1 2.1972 (10) C8—C9 1.387 (4)
Zn1—Cl2 2.2135 (11) C8—C14 1.504 (4)
C1—N1 1.336 (3) C9—C10 1.379 (4)
C1—C2 1.377 (4) C9—H9 0.9300
C1—H1 0.9300 C10—C11 1.367 (4)
C2—C3 1.375 (4) C10—H10 0.9300
C2—H2 0.9300 C11—C12 1.388 (4)
C3—C4 1.376 (4) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.511 (4)
C4—C5 1.379 (4) C13—H13A 0.9600
C4—H4 0.9300 C13—H13B 0.9600
C5—N1 1.343 (3) C13—H13C 0.9600
C5—C6 1.476 (4) C14—H14A 0.9600
C6—N2 1.269 (3) C14—H14B 0.9600
C6—H6 0.9300 C14—H14C 0.9600
C7—C8 1.394 (4)
N1—Zn1—N2 80.43 (8) C10—C9—C8 121.1 (3)
N1—Zn1—Cl1 110.53 (7) C10—C9—H9 119.5
N2—Zn1—Cl1 123.47 (7) C8—C9—H9 119.5
N1—Zn1—Cl2 109.80 (7) C11—C10—C9 120.2 (3)
N2—Zn1—Cl2 107.24 (6) C11—C10—H10 119.9
Cl1—Zn1—Cl2 118.63 (4) C9—C10—H10 119.9
N1—C1—C2 122.1 (3) C10—C11—C12 121.4 (3)
N1—C1—H1 118.9 C10—C11—H11 119.3
C2—C1—H1 118.9 C12—C11—H11 119.3
C3—C2—C1 119.2 (3) C11—C12—C7 117.1 (3)
C3—C2—H2 120.4 C11—C12—C13 120.5 (3)
C1—C2—H2 120.4 C7—C12—C13 122.4 (2)
C2—C3—C4 119.2 (3) C12—C13—H13A 109.5
C2—C3—H3 120.4 C12—C13—H13B 109.5
C4—C3—H3 120.4 H13A—C13—H13B 109.5
C3—C4—C5 118.7 (3) C12—C13—H13C 109.5
C3—C4—H4 120.7 H13A—C13—H13C 109.5
C5—C4—H4 120.7 H13B—C13—H13C 109.5
N1—C5—C4 122.3 (2) C8—C14—H14A 109.5
N1—C5—C6 114.9 (2) C8—C14—H14B 109.5
C4—C5—C6 122.8 (2) H14A—C14—H14B 109.5
N2—C6—C5 120.0 (2) C8—C14—H14C 109.5
N2—C6—H6 120.0 H14A—C14—H14C 109.5
C5—C6—H6 120.0 H14B—C14—H14C 109.5
C8—C7—C12 122.8 (2) C1—N1—C5 118.4 (2)
C8—C7—N2 117.9 (2) C1—N1—Zn1 129.37 (19)
C12—C7—N2 119.3 (2) C5—N1—Zn1 112.12 (16)
C9—C8—C7 117.3 (3) C6—N2—C7 119.8 (2)
C9—C8—C14 121.3 (3) C6—N2—Zn1 111.88 (17)
C7—C8—C14 121.4 (2) C7—N2—Zn1 127.51 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···Cl1i 0.93 2.95 3.762 (3) 147
C6—H6···Cl1i 0.93 2.85 3.675 (3) 148
C1—H1···Cl2ii 0.93 2.93 3.684 (3) 139

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2055).

References

  1. Bruker (2001). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Row, T. N. G. (2010). J. Chem. Sci. 122, 677–685.
  3. Roy, A. S., Saha, P., Mitra, P., Maity, S. S., Ghosh, S. & Ghosh, P. (2011). Dalton Trans. 40, 7375–7384. [DOI] [PubMed]
  4. Schulz, M., Klopfleisch, M., Görls, H., Kahnes, M. & Westerhausen, M. (2009). Inorg. Chim. Acta, 362, 4706-4712.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shi, Y.-F., Feng, Q.-H., Zhao, W.-J., Shi, Y.-B. & Zhan, P. (2010). Acta Cryst. E66, m593. [DOI] [PMC free article] [PubMed]
  7. Talei Bavil Olyai, M. R., Dehghanpour, S., Hoormehr, B., Gholami, F. & Khavasi, H. R. (2008). Acta Cryst. E64, m1191. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812006204/zj2055sup1.cif

e-68-0m311-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006204/zj2055Isup2.hkl

e-68-0m311-Isup2.hkl (128.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES