Abstract
In the title compound, {(NH4)[Cd(NCS)3]·C12H24O6}n, the Cd2+ ion, the ammonium cation, one of the SCN− ligands and the macrocycle are located on mirror planes. The thiocyanate anions act as bridging ligands between the CdII ions, leading to a polymeric chain arrangement extending along [001] around a twofold screw axis. The ammonium ions are contained within the bowl of the macrocycle via extensive N—H⋯O hydrogen bonding.
Related literature
For a singly bridged cadmium thiocyanate complex, see: Bose et al. (2004 ▶). For a triply bridged cadmium thiocyanate complex, see: Chen et al. (2002 ▶). For an S-bound terminal thiocyanate cadmium complex, see: Nfor et al. (2006 ▶). For polymeric structures of complexes, see: Lobana et al. (2008 ▶). For the structures and properties of cadmium compounds, see: Gu et al. (2011 ▶); Zheng et al. (2004 ▶); Rajesh et al. (2004 ▶). For bond lengths and angles of related compounds, see: Nawaz et al. (2010 ▶).
Experimental
Crystal data
(NH4)[Cd(NCS)3]·C12H24O6
M r = 568.99
Orthorhombic,
a = 14.7568 (6) Å
b = 15.4378 (6) Å
c = 10.6383 (5) Å
V = 2423.54 (18) Å3
Z = 4
Mo Kα radiation
μ = 1.20 mm−1
T = 293 K
0.30 × 0.25 × 0.20 mm
Data collection
Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004 ▶) T min = 0.716, T max = 0.796
11323 measured reflections
2483 independent reflections
2445 reflections with I > 2σ(I)
R int = 0.019
Refinement
R[F 2 > 2σ(F 2)] = 0.013
wR(F 2) = 0.034
S = 1.09
2483 reflections
154 parameters
5 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.20 e Å−3
Δρmin = −0.36 e Å−3
Absolute structure: Flack (1983 ▶), 7607 Friedel pairs
Flack parameter: 0.005 (15)
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: APEX2 and SAINT (Bruker, 2004 ▶); data reduction: SAINT and XPREP (Bruker, 2004 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶), PLATON (Spek, 2009 ▶) and publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004898/zb2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004898/zb2021Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N3—H3E⋯O2 | 0.89 (1) | 2.03 (1) | 2.9130 (19) | 174 (3) |
N3—H3D⋯O4 | 0.90 (1) | 2.05 (3) | 2.892 (3) | 155 (5) |
Acknowledgments
The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data.
supplementary crystallographic information
Comment
Thiocyanate anion is known to bind the cadmium ion in different modes: terminal N-bound, terminal S-bound (Nfor et al. 2006) or N:S-bridging ligand. As a bridging ligand, it may give rise to a singly bridged (Bose et al. 2004), doubly bridged or triply bridged (Chen et al. 2002) cadmium complex. Cadmium(II) complexes with thiones possess a variety of structures ranging from four- to six-coordinate species with tetrahedral and octahedral environments for the CdII atom, respectively. In some cases, these units further aggregate to form polymeric structures (Lobana et al., 2008). The interest in cadmium compounds was provoked by their luminescent properties (Zheng et al., 2004), magnetic and catalytic properties (Gu et al., 2011) and non-linear optical properties (Rajesh et al., 2004). Herein, we report the synthesis and crystal structure of cadmium complex, the title compound, (I), coordinated by nitrogen and sulfur.
A perspective view of compound (I) with the atom-numbering scheme is shown in Fig. 1. The CdII ions are bridged by a pair of thiocyanate N:S-bridging ligands around a twofold screw axis. Two trans-N:S-bridging thiocyanates complete the N3S3 donor set around the Cd atom. The thiocyanate anions function as bridging ligands between the CdII centres, leading to a chain-like arrangement expanding along [001]. The thiocyanate ligands are almost linear.
The Cd—S bond lengths are 2.747 (4) and 2.728 (4) Å. These are in agreement with those reported for related compounds (Nawaz et al., 2010). The bond distances of N-bonded NCS groups [Cd—N(NCS) 2.347 (4) and 2.375 (4) Å]. These values agree well with those observed in [Cd(NCS)2(1-vinylimidazole)4] (Gu et al., 2011). The values of the bond angles around cadmium are close to those expected for a regular octahedral geometry, the largest angular deviation being observed for the N2 –Cd1- N1 angle [93.34 (5)°].
The parameters of hydrogen bonds are given in the Table 1. The thiocyanate anions function as bridging ligands between the CdII centres, leading to a chain-like arrangement are parallel to one another and expanding along [001]. The ammonium molecules also participate in extensive N—H···O hydrogen bonding, as shown in Fig. 2.
Experimental
The mixture of 18-crown-6 (C12H24O6), CdCl2 and NH4SCN (molar ratio 1:1:3) were thoroughly dissolved in double distilled water and stirred for 5 h to obtain a homogeneous mixture. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for three weeks.
Refinement
Carbon H atoms were placed geometrically (C—H = 0.97 Å) and treated as riding with Uiso(H) = 1.2Ueq(C). Water H atoms were located in calculated positions and treated in the subsequent refinement as riding atoms, with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(O).
Figures
Fig. 1.
The molecular structure of the title compound with the atom numbering scheme and 50% probability displacement ellipsoids. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
Molecular packing, viewed down c axis.
Crystal data
(NH4)[Cd(NCS)3]·C12H24O6 | F(000) = 1160 |
Mr = 568.99 | Dx = 1.559 Mg m−3 |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 5280 reflections |
a = 14.7568 (6) Å | θ = 2.6–26.7° |
b = 15.4378 (6) Å | µ = 1.20 mm−1 |
c = 10.6383 (5) Å | T = 293 K |
V = 2423.54 (18) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.25 × 0.20 mm |
Data collection
Bruker Kappa APEXII CCD diffractometer | 2483 independent reflections |
Radiation source: fine-focus sealed tube | 2445 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ω and φ scan | θmax = 26.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −18→18 |
Tmin = 0.716, Tmax = 0.796 | k = −19→19 |
11323 measured reflections | l = −13→13 |
Refinement
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.020P)2 + 0.1189P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.034 | (Δ/σ)max = 0.003 |
S = 1.09 | Δρmax = 0.20 e Å−3 |
2483 reflections | Δρmin = −0.36 e Å−3 |
154 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
5 restraints | Extinction coefficient: 0.0058 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 7607 Friedel pairs |
Secondary atom site location: difference Fourier map | Flack parameter: 0.005 (15) |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C1 | 0.61632 (10) | 1.06679 (10) | 0.72484 (14) | 0.0337 (3) | |
C2 | 0.5000 | 0.87710 (13) | 0.7689 (2) | 0.0339 (4) | |
C3 | 0.9203 (2) | 0.92459 (19) | 1.0905 (3) | 0.0905 (9) | |
H3A | 0.9205 | 0.9648 | 1.1606 | 0.109* | |
H3B | 0.9177 | 0.8662 | 1.1240 | 0.109* | |
C4 | 0.83962 (17) | 0.94095 (17) | 1.0097 (4) | 0.0885 (10) | |
H4A | 0.7851 | 0.9382 | 1.0604 | 0.106* | |
H4B | 0.8436 | 0.9985 | 0.9736 | 0.106* | |
C5 | 0.76317 (15) | 0.89705 (16) | 0.8297 (3) | 0.0811 (8) | |
H5A | 0.7709 | 0.9545 | 0.7945 | 0.097* | |
H5B | 0.7062 | 0.8959 | 0.8751 | 0.097* | |
C6 | 0.76078 (16) | 0.83248 (19) | 0.7272 (3) | 0.0845 (9) | |
H6A | 0.7596 | 0.7745 | 0.7621 | 0.101* | |
H6B | 0.7065 | 0.8405 | 0.6770 | 0.101* | |
C7 | 0.8399 (2) | 0.78484 (18) | 0.5498 (3) | 0.0923 (10) | |
H7A | 0.7847 | 0.7908 | 0.5010 | 0.111* | |
H7B | 0.8430 | 0.7259 | 0.5811 | 0.111* | |
C8 | 0.9199 (2) | 0.80317 (17) | 0.4690 (2) | 0.0921 (10) | |
H8A | 0.9185 | 0.7664 | 0.3952 | 0.110* | |
H8B | 0.9186 | 0.8631 | 0.4415 | 0.110* | |
N1 | 0.60575 (11) | 1.03455 (9) | 0.62874 (16) | 0.0496 (4) | |
N2 | 0.5000 | 0.91401 (12) | 0.86273 (19) | 0.0454 (5) | |
O1 | 1.0000 | 0.93509 (16) | 1.0190 (3) | 0.0776 (8) | |
O2 | 0.83461 (10) | 0.87912 (10) | 0.91271 (18) | 0.0692 (4) | |
O3 | 0.83851 (11) | 0.84297 (10) | 0.65100 (18) | 0.0703 (4) | |
O4 | 1.0000 | 0.78737 (15) | 0.5382 (2) | 0.0742 (7) | |
N3 | 1.0000 | 0.80499 (15) | 0.8089 (2) | 0.0476 (5) | |
Cd1 | 0.5000 | 0.971763 (8) | 0.494929 (17) | 0.03587 (6) | |
S1 | 0.63319 (3) | 1.11267 (3) | 0.86256 (4) | 0.04216 (10) | |
S2 | 0.5000 | 0.82400 (4) | 0.63561 (5) | 0.04418 (14) | |
H3E | 0.9497 (12) | 0.8303 (18) | 0.836 (3) | 0.096 (10)* | |
H3C | 1.0000 | 0.7522 (12) | 0.844 (3) | 0.076 (11)* | |
H3D | 1.0000 | 0.817 (4) | 0.7264 (16) | 0.13 (2)* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0298 (7) | 0.0389 (8) | 0.0324 (7) | −0.0048 (6) | 0.0026 (5) | 0.0036 (6) |
C2 | 0.0389 (11) | 0.0289 (9) | 0.0339 (12) | 0.000 | 0.000 | 0.0067 (9) |
C3 | 0.094 (2) | 0.0801 (18) | 0.097 (2) | 0.0021 (14) | 0.0308 (17) | −0.0239 (16) |
C4 | 0.0702 (14) | 0.0716 (13) | 0.124 (3) | 0.0100 (11) | 0.035 (2) | −0.025 (2) |
C5 | 0.0397 (11) | 0.0731 (14) | 0.130 (3) | 0.0164 (10) | 0.0147 (13) | 0.0227 (16) |
C6 | 0.0411 (11) | 0.0820 (16) | 0.130 (3) | −0.0007 (11) | −0.0205 (13) | 0.0190 (17) |
C7 | 0.097 (2) | 0.0739 (16) | 0.106 (2) | 0.0214 (15) | −0.0549 (19) | −0.0204 (15) |
C8 | 0.149 (3) | 0.0678 (14) | 0.0592 (19) | 0.0343 (17) | −0.0297 (17) | −0.0138 (11) |
N1 | 0.0539 (9) | 0.0612 (9) | 0.0337 (8) | −0.0148 (6) | 0.0025 (7) | −0.0026 (7) |
N2 | 0.0682 (13) | 0.0370 (9) | 0.0309 (9) | 0.000 | 0.000 | 0.0015 (9) |
O1 | 0.0683 (13) | 0.0780 (14) | 0.086 (2) | 0.000 | 0.000 | −0.0160 (14) |
O2 | 0.0498 (8) | 0.0570 (8) | 0.1009 (13) | 0.0127 (6) | 0.0144 (8) | 0.0011 (8) |
O3 | 0.0628 (9) | 0.0609 (8) | 0.0872 (12) | 0.0032 (7) | −0.0184 (8) | 0.0017 (8) |
O4 | 0.0963 (18) | 0.0630 (13) | 0.0632 (14) | 0.000 | 0.000 | −0.0012 (10) |
N3 | 0.0385 (12) | 0.0456 (12) | 0.0587 (15) | 0.000 | 0.000 | 0.0006 (10) |
Cd1 | 0.04531 (9) | 0.03708 (8) | 0.02522 (8) | 0.000 | 0.000 | −0.00054 (7) |
S1 | 0.0465 (2) | 0.0454 (2) | 0.0346 (2) | −0.00946 (16) | 0.00023 (17) | −0.00481 (17) |
S2 | 0.0649 (4) | 0.0355 (3) | 0.0322 (3) | 0.000 | 0.000 | −0.0024 (2) |
Geometric parameters (Å, º)
C1—N1 | 1.148 (2) | C7—C8 | 1.488 (4) |
C1—S1 | 1.6463 (15) | C7—H7A | 0.9700 |
C2—N2 | 1.149 (3) | C7—H7B | 0.9700 |
C2—S2 | 1.638 (2) | C8—O4 | 1.413 (3) |
C3—O1 | 1.410 (3) | C8—H8A | 0.9700 |
C3—C4 | 1.490 (5) | C8—H8B | 0.9700 |
C3—H3A | 0.9700 | N1—Cd1 | 2.3241 (16) |
C3—H3B | 0.9700 | N2—Cd1i | 2.256 (2) |
C4—O2 | 1.408 (4) | O1—C3ii | 1.410 (3) |
C4—H4A | 0.9700 | O4—C8ii | 1.413 (3) |
C4—H4B | 0.9700 | N3—H3E | 0.888 (10) |
C5—O2 | 1.403 (3) | N3—H3C | 0.897 (10) |
C5—C6 | 1.478 (4) | N3—H3D | 0.898 (10) |
C5—H5A | 0.9700 | Cd1—N2iii | 2.256 (2) |
C5—H5B | 0.9700 | Cd1—N1iv | 2.3241 (16) |
C6—O3 | 1.414 (3) | Cd1—S2 | 2.7283 (6) |
C6—H6A | 0.9700 | Cd1—S1iii | 2.7468 (4) |
C6—H6B | 0.9700 | Cd1—S1v | 2.7468 (4) |
C7—O3 | 1.402 (3) | S1—Cd1i | 2.7468 (4) |
N1—C1—S1 | 179.10 (16) | O4—C8—C7 | 109.28 (19) |
N2—C2—S2 | 179.69 (19) | O4—C8—H8A | 109.8 |
O1—C3—C4 | 109.6 (3) | C7—C8—H8A | 109.8 |
O1—C3—H3A | 109.7 | O4—C8—H8B | 109.8 |
C4—C3—H3A | 109.7 | C7—C8—H8B | 109.8 |
O1—C3—H3B | 109.7 | H8A—C8—H8B | 108.3 |
C4—C3—H3B | 109.7 | C1—N1—Cd1 | 144.86 (14) |
H3A—C3—H3B | 108.2 | C2—N2—Cd1i | 158.30 (17) |
O2—C4—C3 | 110.48 (19) | C3ii—O1—C3 | 113.1 (4) |
O2—C4—H4A | 109.6 | C5—O2—C4 | 111.54 (19) |
C3—C4—H4A | 109.6 | C7—O3—C6 | 112.2 (2) |
O2—C4—H4B | 109.6 | C8—O4—C8ii | 113.4 (3) |
C3—C4—H4B | 109.6 | H3E—N3—H3C | 105 (2) |
H4A—C4—H4B | 108.1 | H3E—N3—H3D | 103 (3) |
O2—C5—C6 | 110.46 (18) | H3C—N3—H3D | 127 (5) |
O2—C5—H5A | 109.6 | N2iii—Cd1—N1 | 93.20 (5) |
C6—C5—H5A | 109.6 | N2iii—Cd1—N1iv | 93.20 (5) |
O2—C5—H5B | 109.6 | N1—Cd1—N1iv | 84.36 (8) |
C6—C5—H5B | 109.6 | N2iii—Cd1—S2 | 174.69 (5) |
H5A—C5—H5B | 108.1 | N1—Cd1—S2 | 90.73 (4) |
O3—C6—C5 | 109.0 (2) | N1iv—Cd1—S2 | 90.73 (4) |
O3—C6—H6A | 109.9 | N2iii—Cd1—S1iii | 92.94 (4) |
C5—C6—H6A | 109.9 | N1—Cd1—S1iii | 172.93 (4) |
O3—C6—H6B | 109.9 | N1iv—Cd1—S1iii | 91.80 (4) |
C5—C6—H6B | 109.9 | S2—Cd1—S1iii | 83.363 (12) |
H6A—C6—H6B | 108.3 | N2iii—Cd1—S1v | 92.94 (4) |
O3—C7—C8 | 109.5 (2) | N1—Cd1—S1v | 91.80 (4) |
O3—C7—H7A | 109.8 | N1iv—Cd1—S1v | 172.93 (4) |
C8—C7—H7A | 109.8 | S2—Cd1—S1v | 83.363 (12) |
O3—C7—H7B | 109.8 | S1iii—Cd1—S1v | 91.373 (19) |
C8—C7—H7B | 109.8 | C1—S1—Cd1i | 98.27 (5) |
H7A—C7—H7B | 108.2 | C2—S2—Cd1 | 93.24 (7) |
O1—C3—C4—O2 | 63.7 (3) | C1—N1—Cd1—N2iii | 107.3 (2) |
O2—C5—C6—O3 | −67.4 (2) | C1—N1—Cd1—N1iv | 14.4 (2) |
O3—C7—C8—O4 | 64.2 (3) | C1—N1—Cd1—S2 | −76.3 (2) |
C4—C3—O1—C3ii | 177.23 (15) | C1—N1—Cd1—S1v | −159.7 (2) |
C6—C5—O2—C4 | 178.6 (2) | N1—Cd1—S2—C2 | 42.19 (4) |
C3—C4—O2—C5 | −175.5 (2) | N1iv—Cd1—S2—C2 | −42.19 (4) |
C8—C7—O3—C6 | 176.27 (19) | S1iii—Cd1—S2—C2 | −133.916 (9) |
C5—C6—O3—C7 | −178.75 (19) | S1v—Cd1—S2—C2 | 133.916 (9) |
C7—C8—O4—C8ii | −179.93 (16) |
Symmetry codes: (i) −x+1, −y+2, z+1/2; (ii) −x+2, y, z; (iii) −x+1, −y+2, z−1/2; (iv) −x+1, y, z; (v) x, −y+2, z−1/2.
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3E···O2 | 0.89 (1) | 2.03 (1) | 2.9130 (19) | 174 (3) |
N3—H3D···O4 | 0.90 (1) | 2.05 (3) | 2.892 (3) | 155 (5) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2021).
References
- Bose, D., Banerjee, J., Rahaman, S. H., Mostafa, G., Fun, H.-K., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 2045–2053.
- Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119–125.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Gu, J. Z., Lv, D. Y., Gao, Z. Q., Liu, J. Z., Dou, W. & Tang, Y. (2011). J. Solid State Chem. 184, 675–683.
- Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718–723.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m950. [DOI] [PMC free article] [PubMed]
- Nfor, E. N., Liu, W., Zuo, J.-L. & You, X.-Z. (2006). Transition Met. Chem. 31, 837–841.
- Rajesh, N. P., Kannan, V., Ashok, M., Sivaji, K., Raghavan, P. S. & Ramasamy, P. (2004). J. Cryst. Growth, 262, 561–566.
- Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004898/zb2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004898/zb2021Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report