Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 24;68(Pt 3):m335–m336. doi: 10.1107/S1600536812004898

catena-Poly[ammonium (cadmium-tri-μ-thio­cyanato-κ4 S:N2 N:S)–1,4,10,13,16-hexa­oxa­cyclo­octa­decane (1/1)]

V Ramesh a, K Rajarajan b, K Sendil Kumar a, A Subashini a, M NizamMohideen c,*
PMCID: PMC3297278  PMID: 22412468

Abstract

In the title compound, {(NH4)[Cd(NCS)3]·C12H24O6}n, the Cd2+ ion, the ammonium cation, one of the SCN ligands and the macrocycle are located on mirror planes. The thiocyanate anions act as bridging ligands between the CdII ions, leading to a polymeric chain arrangement extending along [001] around a twofold screw axis. The ammonium ions are contained within the bowl of the macrocycle via extensive N—H⋯O hydrogen bonding.

Related literature  

For a singly bridged cadmium thio­cyanate complex, see: Bose et al. (2004). For a triply bridged cadmium thio­cyanate complex, see: Chen et al. (2002). For an S-bound terminal thio­cyanate cadmium complex, see: Nfor et al. (2006). For polymeric structures of complexes, see: Lobana et al. (2008). For the structures and properties of cadmium compounds, see: Gu et al. (2011); Zheng et al. (2004); Rajesh et al. (2004). For bond lengths and angles of related compounds, see: Nawaz et al. (2010).graphic file with name e-68-0m335-scheme1.jpg

Experimental  

Crystal data  

  • (NH4)[Cd(NCS)3]·C12H24O6

  • M r = 568.99

  • Orthorhombic, Inline graphic

  • a = 14.7568 (6) Å

  • b = 15.4378 (6) Å

  • c = 10.6383 (5) Å

  • V = 2423.54 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.716, T max = 0.796

  • 11323 measured reflections

  • 2483 independent reflections

  • 2445 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.013

  • wR(F 2) = 0.034

  • S = 1.09

  • 2483 reflections

  • 154 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), 7607 Friedel pairs

  • Flack parameter: 0.005 (15)

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004898/zb2021sup1.cif

e-68-0m335-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004898/zb2021Isup2.hkl

e-68-0m335-Isup2.hkl (122KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3E⋯O2 0.89 (1) 2.03 (1) 2.9130 (19) 174 (3)
N3—H3D⋯O4 0.90 (1) 2.05 (3) 2.892 (3) 155 (5)

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data.

supplementary crystallographic information

Comment

Thiocyanate anion is known to bind the cadmium ion in different modes: terminal N-bound, terminal S-bound (Nfor et al. 2006) or N:S-bridging ligand. As a bridging ligand, it may give rise to a singly bridged (Bose et al. 2004), doubly bridged or triply bridged (Chen et al. 2002) cadmium complex. Cadmium(II) complexes with thiones possess a variety of structures ranging from four- to six-coordinate species with tetrahedral and octahedral environments for the CdII atom, respectively. In some cases, these units further aggregate to form polymeric structures (Lobana et al., 2008). The interest in cadmium compounds was provoked by their luminescent properties (Zheng et al., 2004), magnetic and catalytic properties (Gu et al., 2011) and non-linear optical properties (Rajesh et al., 2004). Herein, we report the synthesis and crystal structure of cadmium complex, the title compound, (I), coordinated by nitrogen and sulfur.

A perspective view of compound (I) with the atom-numbering scheme is shown in Fig. 1. The CdII ions are bridged by a pair of thiocyanate N:S-bridging ligands around a twofold screw axis. Two trans-N:S-bridging thiocyanates complete the N3S3 donor set around the Cd atom. The thiocyanate anions function as bridging ligands between the CdII centres, leading to a chain-like arrangement expanding along [001]. The thiocyanate ligands are almost linear.

The Cd—S bond lengths are 2.747 (4) and 2.728 (4) Å. These are in agreement with those reported for related compounds (Nawaz et al., 2010). The bond distances of N-bonded NCS groups [Cd—N(NCS) 2.347 (4) and 2.375 (4) Å]. These values agree well with those observed in [Cd(NCS)2(1-vinylimidazole)4] (Gu et al., 2011). The values of the bond angles around cadmium are close to those expected for a regular octahedral geometry, the largest angular deviation being observed for the N2 –Cd1- N1 angle [93.34 (5)°].

The parameters of hydrogen bonds are given in the Table 1. The thiocyanate anions function as bridging ligands between the CdII centres, leading to a chain-like arrangement are parallel to one another and expanding along [001]. The ammonium molecules also participate in extensive N—H···O hydrogen bonding, as shown in Fig. 2.

Experimental

The mixture of 18-crown-6 (C12H24O6), CdCl2 and NH4SCN (molar ratio 1:1:3) were thoroughly dissolved in double distilled water and stirred for 5 h to obtain a homogeneous mixture. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for three weeks.

Refinement

Carbon H atoms were placed geometrically (C—H = 0.97 Å) and treated as riding with Uiso(H) = 1.2Ueq(C). Water H atoms were located in calculated positions and treated in the subsequent refinement as riding atoms, with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme and 50% probability displacement ellipsoids. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Molecular packing, viewed down c axis.

Crystal data

(NH4)[Cd(NCS)3]·C12H24O6 F(000) = 1160
Mr = 568.99 Dx = 1.559 Mg m3
Orthorhombic, Cmc21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2 Cell parameters from 5280 reflections
a = 14.7568 (6) Å θ = 2.6–26.7°
b = 15.4378 (6) Å µ = 1.20 mm1
c = 10.6383 (5) Å T = 293 K
V = 2423.54 (18) Å3 Block, colourless
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2483 independent reflections
Radiation source: fine-focus sealed tube 2445 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
ω and φ scan θmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −18→18
Tmin = 0.716, Tmax = 0.796 k = −19→19
11323 measured reflections l = −13→13

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.020P)2 + 0.1189P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.034 (Δ/σ)max = 0.003
S = 1.09 Δρmax = 0.20 e Å3
2483 reflections Δρmin = −0.36 e Å3
154 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraints Extinction coefficient: 0.0058 (2)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 7607 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.005 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.61632 (10) 1.06679 (10) 0.72484 (14) 0.0337 (3)
C2 0.5000 0.87710 (13) 0.7689 (2) 0.0339 (4)
C3 0.9203 (2) 0.92459 (19) 1.0905 (3) 0.0905 (9)
H3A 0.9205 0.9648 1.1606 0.109*
H3B 0.9177 0.8662 1.1240 0.109*
C4 0.83962 (17) 0.94095 (17) 1.0097 (4) 0.0885 (10)
H4A 0.7851 0.9382 1.0604 0.106*
H4B 0.8436 0.9985 0.9736 0.106*
C5 0.76317 (15) 0.89705 (16) 0.8297 (3) 0.0811 (8)
H5A 0.7709 0.9545 0.7945 0.097*
H5B 0.7062 0.8959 0.8751 0.097*
C6 0.76078 (16) 0.83248 (19) 0.7272 (3) 0.0845 (9)
H6A 0.7596 0.7745 0.7621 0.101*
H6B 0.7065 0.8405 0.6770 0.101*
C7 0.8399 (2) 0.78484 (18) 0.5498 (3) 0.0923 (10)
H7A 0.7847 0.7908 0.5010 0.111*
H7B 0.8430 0.7259 0.5811 0.111*
C8 0.9199 (2) 0.80317 (17) 0.4690 (2) 0.0921 (10)
H8A 0.9185 0.7664 0.3952 0.110*
H8B 0.9186 0.8631 0.4415 0.110*
N1 0.60575 (11) 1.03455 (9) 0.62874 (16) 0.0496 (4)
N2 0.5000 0.91401 (12) 0.86273 (19) 0.0454 (5)
O1 1.0000 0.93509 (16) 1.0190 (3) 0.0776 (8)
O2 0.83461 (10) 0.87912 (10) 0.91271 (18) 0.0692 (4)
O3 0.83851 (11) 0.84297 (10) 0.65100 (18) 0.0703 (4)
O4 1.0000 0.78737 (15) 0.5382 (2) 0.0742 (7)
N3 1.0000 0.80499 (15) 0.8089 (2) 0.0476 (5)
Cd1 0.5000 0.971763 (8) 0.494929 (17) 0.03587 (6)
S1 0.63319 (3) 1.11267 (3) 0.86256 (4) 0.04216 (10)
S2 0.5000 0.82400 (4) 0.63561 (5) 0.04418 (14)
H3E 0.9497 (12) 0.8303 (18) 0.836 (3) 0.096 (10)*
H3C 1.0000 0.7522 (12) 0.844 (3) 0.076 (11)*
H3D 1.0000 0.817 (4) 0.7264 (16) 0.13 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0298 (7) 0.0389 (8) 0.0324 (7) −0.0048 (6) 0.0026 (5) 0.0036 (6)
C2 0.0389 (11) 0.0289 (9) 0.0339 (12) 0.000 0.000 0.0067 (9)
C3 0.094 (2) 0.0801 (18) 0.097 (2) 0.0021 (14) 0.0308 (17) −0.0239 (16)
C4 0.0702 (14) 0.0716 (13) 0.124 (3) 0.0100 (11) 0.035 (2) −0.025 (2)
C5 0.0397 (11) 0.0731 (14) 0.130 (3) 0.0164 (10) 0.0147 (13) 0.0227 (16)
C6 0.0411 (11) 0.0820 (16) 0.130 (3) −0.0007 (11) −0.0205 (13) 0.0190 (17)
C7 0.097 (2) 0.0739 (16) 0.106 (2) 0.0214 (15) −0.0549 (19) −0.0204 (15)
C8 0.149 (3) 0.0678 (14) 0.0592 (19) 0.0343 (17) −0.0297 (17) −0.0138 (11)
N1 0.0539 (9) 0.0612 (9) 0.0337 (8) −0.0148 (6) 0.0025 (7) −0.0026 (7)
N2 0.0682 (13) 0.0370 (9) 0.0309 (9) 0.000 0.000 0.0015 (9)
O1 0.0683 (13) 0.0780 (14) 0.086 (2) 0.000 0.000 −0.0160 (14)
O2 0.0498 (8) 0.0570 (8) 0.1009 (13) 0.0127 (6) 0.0144 (8) 0.0011 (8)
O3 0.0628 (9) 0.0609 (8) 0.0872 (12) 0.0032 (7) −0.0184 (8) 0.0017 (8)
O4 0.0963 (18) 0.0630 (13) 0.0632 (14) 0.000 0.000 −0.0012 (10)
N3 0.0385 (12) 0.0456 (12) 0.0587 (15) 0.000 0.000 0.0006 (10)
Cd1 0.04531 (9) 0.03708 (8) 0.02522 (8) 0.000 0.000 −0.00054 (7)
S1 0.0465 (2) 0.0454 (2) 0.0346 (2) −0.00946 (16) 0.00023 (17) −0.00481 (17)
S2 0.0649 (4) 0.0355 (3) 0.0322 (3) 0.000 0.000 −0.0024 (2)

Geometric parameters (Å, º)

C1—N1 1.148 (2) C7—C8 1.488 (4)
C1—S1 1.6463 (15) C7—H7A 0.9700
C2—N2 1.149 (3) C7—H7B 0.9700
C2—S2 1.638 (2) C8—O4 1.413 (3)
C3—O1 1.410 (3) C8—H8A 0.9700
C3—C4 1.490 (5) C8—H8B 0.9700
C3—H3A 0.9700 N1—Cd1 2.3241 (16)
C3—H3B 0.9700 N2—Cd1i 2.256 (2)
C4—O2 1.408 (4) O1—C3ii 1.410 (3)
C4—H4A 0.9700 O4—C8ii 1.413 (3)
C4—H4B 0.9700 N3—H3E 0.888 (10)
C5—O2 1.403 (3) N3—H3C 0.897 (10)
C5—C6 1.478 (4) N3—H3D 0.898 (10)
C5—H5A 0.9700 Cd1—N2iii 2.256 (2)
C5—H5B 0.9700 Cd1—N1iv 2.3241 (16)
C6—O3 1.414 (3) Cd1—S2 2.7283 (6)
C6—H6A 0.9700 Cd1—S1iii 2.7468 (4)
C6—H6B 0.9700 Cd1—S1v 2.7468 (4)
C7—O3 1.402 (3) S1—Cd1i 2.7468 (4)
N1—C1—S1 179.10 (16) O4—C8—C7 109.28 (19)
N2—C2—S2 179.69 (19) O4—C8—H8A 109.8
O1—C3—C4 109.6 (3) C7—C8—H8A 109.8
O1—C3—H3A 109.7 O4—C8—H8B 109.8
C4—C3—H3A 109.7 C7—C8—H8B 109.8
O1—C3—H3B 109.7 H8A—C8—H8B 108.3
C4—C3—H3B 109.7 C1—N1—Cd1 144.86 (14)
H3A—C3—H3B 108.2 C2—N2—Cd1i 158.30 (17)
O2—C4—C3 110.48 (19) C3ii—O1—C3 113.1 (4)
O2—C4—H4A 109.6 C5—O2—C4 111.54 (19)
C3—C4—H4A 109.6 C7—O3—C6 112.2 (2)
O2—C4—H4B 109.6 C8—O4—C8ii 113.4 (3)
C3—C4—H4B 109.6 H3E—N3—H3C 105 (2)
H4A—C4—H4B 108.1 H3E—N3—H3D 103 (3)
O2—C5—C6 110.46 (18) H3C—N3—H3D 127 (5)
O2—C5—H5A 109.6 N2iii—Cd1—N1 93.20 (5)
C6—C5—H5A 109.6 N2iii—Cd1—N1iv 93.20 (5)
O2—C5—H5B 109.6 N1—Cd1—N1iv 84.36 (8)
C6—C5—H5B 109.6 N2iii—Cd1—S2 174.69 (5)
H5A—C5—H5B 108.1 N1—Cd1—S2 90.73 (4)
O3—C6—C5 109.0 (2) N1iv—Cd1—S2 90.73 (4)
O3—C6—H6A 109.9 N2iii—Cd1—S1iii 92.94 (4)
C5—C6—H6A 109.9 N1—Cd1—S1iii 172.93 (4)
O3—C6—H6B 109.9 N1iv—Cd1—S1iii 91.80 (4)
C5—C6—H6B 109.9 S2—Cd1—S1iii 83.363 (12)
H6A—C6—H6B 108.3 N2iii—Cd1—S1v 92.94 (4)
O3—C7—C8 109.5 (2) N1—Cd1—S1v 91.80 (4)
O3—C7—H7A 109.8 N1iv—Cd1—S1v 172.93 (4)
C8—C7—H7A 109.8 S2—Cd1—S1v 83.363 (12)
O3—C7—H7B 109.8 S1iii—Cd1—S1v 91.373 (19)
C8—C7—H7B 109.8 C1—S1—Cd1i 98.27 (5)
H7A—C7—H7B 108.2 C2—S2—Cd1 93.24 (7)
O1—C3—C4—O2 63.7 (3) C1—N1—Cd1—N2iii 107.3 (2)
O2—C5—C6—O3 −67.4 (2) C1—N1—Cd1—N1iv 14.4 (2)
O3—C7—C8—O4 64.2 (3) C1—N1—Cd1—S2 −76.3 (2)
C4—C3—O1—C3ii 177.23 (15) C1—N1—Cd1—S1v −159.7 (2)
C6—C5—O2—C4 178.6 (2) N1—Cd1—S2—C2 42.19 (4)
C3—C4—O2—C5 −175.5 (2) N1iv—Cd1—S2—C2 −42.19 (4)
C8—C7—O3—C6 176.27 (19) S1iii—Cd1—S2—C2 −133.916 (9)
C5—C6—O3—C7 −178.75 (19) S1v—Cd1—S2—C2 133.916 (9)
C7—C8—O4—C8ii −179.93 (16)

Symmetry codes: (i) −x+1, −y+2, z+1/2; (ii) −x+2, y, z; (iii) −x+1, −y+2, z−1/2; (iv) −x+1, y, z; (v) x, −y+2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3E···O2 0.89 (1) 2.03 (1) 2.9130 (19) 174 (3)
N3—H3D···O4 0.90 (1) 2.05 (3) 2.892 (3) 155 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2021).

References

  1. Bose, D., Banerjee, J., Rahaman, S. H., Mostafa, G., Fun, H.-K., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 2045–2053.
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119–125.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Gu, J. Z., Lv, D. Y., Gao, Z. Q., Liu, J. Z., Dou, W. & Tang, Y. (2011). J. Solid State Chem. 184, 675–683.
  8. Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718–723.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m950. [DOI] [PMC free article] [PubMed]
  11. Nfor, E. N., Liu, W., Zuo, J.-L. & You, X.-Z. (2006). Transition Met. Chem. 31, 837–841.
  12. Rajesh, N. P., Kannan, V., Ashok, M., Sivaji, K., Raghavan, P. S. & Ramasamy, P. (2004). J. Cryst. Growth, 262, 561–566.
  13. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004898/zb2021sup1.cif

e-68-0m335-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004898/zb2021Isup2.hkl

e-68-0m335-Isup2.hkl (122KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES