Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 29;68(Pt 3):m344–m345. doi: 10.1107/S1600536812008100

Trichloridotris{N-[phen­yl(pyridin-2-yl)­methyl­idene]hydroxyl­amine-κ2 N,N′}samarium(III)

Tao Lei a, Wenqian Chen b, Yanmei Chen b, Bin Hu a, Yahong Li a,b,*
PMCID: PMC3297284  PMID: 22412474

Abstract

The SmIII ion in the title compound, [SmCl3(C12H10N2O)3], shows a coordination number of nine with a slightly distorted tricapped trigonal prismatic geometry based on a Cl3N6 donor set. The mol­ecular structure is stabilized by three intra­molecular O—H⋯Cl hydrogen bonds.

Related literature  

For related literature on the phenyl-2-pyridyl ketone oxime ligand chelating one metal centre, see: Yin & Liu (2009); Yan & Liu (2009); Xiang et al. (2006); Milios et al. (2004). For the phenyl-2-pyridyl ketone oxime ligand bridging two metals, see: Liu et al.. (2011); Holynska & Dehnen (2011); Papatriantafyllopoulou et al. (2007). For the applications of phenyl-2-pyridyl ketone oxime complexes, see: Korpi et al. (2005); Stamatatos et al. (2006).graphic file with name e-68-0m344-scheme1.jpg

Experimental  

Crystal data  

  • [SmCl3(C12H10N2O)3]

  • M r = 851.37

  • Triclinic, Inline graphic

  • a = 8.6415 (17) Å

  • b = 10.422 (2) Å

  • c = 19.771 (4) Å

  • α = 92.18 (3)°

  • β = 94.47 (3)°

  • γ = 92.62 (3)°

  • V = 1771.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 293 K

  • 0.30 × 0.17 × 0.12 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.595, T max = 0.802

  • 32032 measured reflections

  • 8553 independent reflections

  • 7752 reflections with I > 2σ(I)

  • R int = 0.073

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.068

  • S = 1.04

  • 8553 reflections

  • 445 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008100/tk5061sup1.cif

e-68-0m344-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008100/tk5061Isup2.hkl

e-68-0m344-Isup2.hkl (418.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sm1—N1 2.578 (2)
Sm1—N2 2.634 (2)
Sm1—N6 2.649 (2)
Sm1—N4 2.668 (2)
Sm1—N5 2.673 (2)
Sm1—N3 2.713 (2)
Sm1—Cl3 2.7501 (9)
Sm1—Cl4 2.7658 (9)
Sm1—Cl2 2.8114 (10)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl3 0.82 2.22 2.960 (2) 150
O2—H2⋯Cl4 0.82 2.18 2.920 (2) 150
O3—H3⋯Cl2 0.82 2.18 2.920 (2) 149

Acknowledgments

The authors appreciate the financial support of the Hundreds of Talents Program (grant No. 2005012) of CAS, the Natural Science Foundation of China (grant No. 20872105), ‘Qinglan Project’ of Jiangsu Province (grant No. Bu109805) and the Open Project of the Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education of Lanzhou University (grant No. LZUMMM2010003).

supplementary crystallographic information

Comment

Phenyl-2-pyridyl ketone oxime is a ligand used in the synthesis of metal-organic complexes. It usually binds to metals in a bidentate fashion, either chelating one metal centre (Yin & Liu, 2009; Yan & Liu, 2009; Xiang et al., 2006; Milios et al., 2004) or bridging two metals (Liu et al., 2011; Holynska & Dehnen, 2011; Papatriantafyllopoulou et al., 2007). Its complexes find applications in diverse areas such as functional supramolecular design, magnetic materials and catalysis (Korpi et al., 2005; Stamatatos et al., 2006). However, these complexes are focused on transition metals. Here we report a new samarium complex, which is formed by the reaction of SmCl3.6H2O with phenyl-2-pyridyl ketone oxime. The compound consists of three N,N-chelating ligands and three chloride anions. The central SmIII ion adopts a distorted tricapped trigonal prism geometry (Fig. 1), which is ligated by six N atoms from three different phenyl-2-pyridyl ketone oxime ligands and three Cl anions. The Sm—N and Sm—Cl bond distances are in the expected ranges of 2.578 (2)–2.713 (2) Å and 2.7501 (9)–2.8114 (10) Å, respectively (Table 1), and the bond angles around the Sm atom are in the range of 59.12 (6)–146.13 (7)°. Three intramolecular O—H···Cl hydrogen bonds are noted (see Fig. 2 and Table 2).

Experimental

A mixture of phenyl-2-pyridyl ketone oxime (0.0200 g, 0.1 mmol), SmCl3.6H2O (0.0180 g, 0.05 mmol), and C2H5OH (2 ml) was sealed in a 6 ml Pyrex-tube. The tube was heated at 85 °C for 3 days under autogenous pressure. Cooling of the resultant solution to room temperature gave colourless crystals of the product. The crystals were collected by filtration, washed with C2H5OH (2 ml) and dried in air. Anal. Calcd for C36H30Cl3N6O3Sm: C, 50.79; H, 3.55; N, 9.87%. Found: C, 50.45; H, 3.25; N, 9.65%.

Refinement

H atoms were placed in calculated positions and included in the refinement using a riding-model approximation, with C—H = 0.93 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. The H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

Idealised view of the molecular structure showing intramolecular hydrogen bonds as dashed lines

Crystal data

[SmCl3(C12H10N2O)3] Z = 2
Mr = 851.37 F(000) = 850
Triclinic, P1 char
Hall symbol: -P 1 Dx = 1.596 Mg m3
a = 8.6415 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.422 (2) Å Cell parameters from 8108 reflections
c = 19.771 (4) Å θ = 2.2–28.1°
α = 92.18 (3)° µ = 1.93 mm1
β = 94.47 (3)° T = 293 K
γ = 92.62 (3)° Block, colourless
V = 1771.8 (6) Å3 0.30 × 0.17 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 8553 independent reflections
Radiation source: fine-focus sealed tube 7752 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.073
φ and ω scans θmax = 28.0°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −11→11
Tmin = 0.595, Tmax = 0.802 k = −13→13
32032 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0279P)2 + 0.2554P] where P = (Fo2 + 2Fc2)/3
8553 reflections (Δ/σ)max = 0.002
445 parameters Δρmax = 0.97 e Å3
0 restraints Δρmin = −0.62 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sm1 0.834137 (13) 0.905657 (10) 0.251022 (6) 0.03257 (5)
Cl2 0.72244 (8) 0.79917 (6) 0.36744 (4) 0.04910 (16)
Cl3 0.51963 (7) 0.92727 (7) 0.22387 (4) 0.05149 (16)
Cl4 0.89706 (9) 1.14430 (6) 0.20005 (4) 0.05223 (16)
N3 1.0834 (2) 0.84667 (18) 0.18255 (11) 0.0400 (5)
N1 0.7598 (2) 1.08550 (19) 0.33380 (11) 0.0420 (5)
N4 1.0201 (2) 0.72192 (18) 0.29251 (11) 0.0395 (5)
O1 0.6146 (2) 1.1365 (2) 0.32620 (12) 0.0609 (6)
H1 0.5629 1.0988 0.2943 0.091*
N2 1.0487 (2) 1.01068 (18) 0.34079 (11) 0.0380 (4)
N5 0.7661 (2) 0.88995 (19) 0.11666 (11) 0.0436 (5)
N6 0.7487 (2) 0.68142 (19) 0.18849 (11) 0.0424 (5)
C24 0.8012 (3) 1.2479 (2) 0.42591 (13) 0.0413 (6)
C28 1.0078 (3) 1.0932 (2) 0.38971 (13) 0.0387 (5)
C30 1.2153 (3) 0.5636 (2) 0.28091 (13) 0.0387 (5)
C34 1.1492 (3) 0.7327 (2) 0.19293 (13) 0.0377 (5)
C36 1.2342 (4) 0.3413 (3) 0.30392 (17) 0.0619 (9)
H36 1.1901 0.2581 0.3022 0.074*
C39 1.1232 (3) 0.6735 (2) 0.25778 (13) 0.0364 (5)
O2 0.7737 (3) 0.99726 (17) 0.07745 (10) 0.0563 (5)
H2 0.8046 1.0603 0.1016 0.084*
C44 0.7355 (3) 0.7852 (2) 0.08127 (13) 0.0421 (6)
C45 0.8487 (3) 1.1408 (2) 0.38184 (13) 0.0388 (5)
C48 1.1171 (3) 0.9060 (3) 0.12670 (14) 0.0492 (7)
H48 1.0781 0.9866 0.1200 0.059*
C49 0.7139 (3) 0.7787 (3) 0.00623 (14) 0.0488 (6)
C50 1.1485 (3) 0.4409 (2) 0.27872 (15) 0.0492 (6)
H50 1.0466 0.4249 0.2605 0.059*
C56 1.2057 (3) 0.8558 (3) 0.07822 (15) 0.0551 (7)
H56 1.2237 0.9005 0.0396 0.066*
C57 1.1961 (3) 0.9757 (2) 0.34498 (14) 0.0430 (6)
H57 1.2273 0.9214 0.3108 0.052*
C58 1.1091 (3) 1.1342 (3) 0.44452 (14) 0.0512 (7)
H58 1.0761 1.1885 0.4784 0.061*
C60 0.7322 (3) 0.5757 (2) 0.22425 (16) 0.0523 (7)
H60 0.7472 0.5842 0.2713 0.063*
C66 0.8616 (4) 1.3709 (2) 0.42052 (15) 0.0540 (7)
H66 0.9350 1.3880 0.3897 0.065*
C67 0.7224 (3) 0.6673 (2) 0.12071 (14) 0.0456 (6)
C68 1.3676 (3) 0.5872 (3) 0.30676 (15) 0.0504 (7)
H68 1.4142 0.6694 0.3069 0.060*
C72 1.4497 (4) 0.4863 (3) 0.33252 (16) 0.0613 (8)
H72 1.5516 0.5014 0.3509 0.074*
C74 0.5744 (4) 0.8370 (3) −0.09703 (18) 0.0715 (9)
H74 0.4925 0.8773 −0.1194 0.086*
C76 1.3829 (4) 0.3653 (3) 0.33123 (16) 0.0647 (9)
H76 1.4390 0.2987 0.3491 0.078*
C77 1.3042 (3) 1.0162 (3) 0.39746 (15) 0.0516 (7)
H77 1.4059 0.9906 0.3978 0.062*
C78 1.2397 (3) 0.6766 (3) 0.14662 (14) 0.0498 (6)
H78 1.2820 0.5977 0.1549 0.060*
C81 0.6913 (4) 1.2258 (3) 0.47195 (15) 0.0564 (7)
H81 0.6475 1.1433 0.4754 0.068*
C83 0.5899 (3) 0.8375 (3) −0.02754 (15) 0.0542 (7)
H83 0.5172 0.8774 −0.0027 0.065*
C87 0.8122 (4) 1.4694 (3) 0.46141 (17) 0.0631 (8)
H87 0.8518 1.5528 0.4571 0.076*
C88 0.7077 (4) 1.4467 (3) 0.50742 (17) 0.0643 (8)
H88 0.6778 1.5136 0.5353 0.077*
C89 0.6464 (4) 1.3248 (4) 0.51256 (18) 0.0729 (10)
H89 0.5736 1.3087 0.5438 0.087*
C91 0.6808 (6) 0.7763 (4) −0.13346 (19) 0.0888 (13)
H91 0.6697 0.7758 −0.1806 0.107*
C92 1.2599 (3) 1.0943 (3) 0.44881 (16) 0.0600 (8)
H92 1.3293 1.1199 0.4857 0.072*
C93 1.2669 (4) 0.7385 (3) 0.08813 (16) 0.0584 (8)
H93 1.3258 0.7013 0.0559 0.070*
C96 0.8206 (4) 0.7178 (3) −0.03163 (17) 0.0679 (9)
H96 0.9036 0.6780 −0.0098 0.081*
C99 0.8025 (5) 0.7168 (4) −0.1020 (2) 0.0835 (11)
H99 0.8729 0.6757 −0.1276 0.100*
C100 0.6944 (4) 0.4556 (3) 0.19527 (19) 0.0700 (9)
H100 0.6852 0.3848 0.2222 0.084*
C102 0.6710 (5) 0.4416 (3) 0.1271 (2) 0.0852 (12)
H102 0.6470 0.3608 0.1063 0.102*
C105 0.6830 (4) 0.5498 (3) 0.08822 (18) 0.0718 (9)
H105 0.6648 0.5428 0.0412 0.086*
O3 1.0089 (2) 0.66543 (19) 0.35400 (10) 0.0568 (5)
H3 0.9363 0.6948 0.3729 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sm1 0.03595 (7) 0.02704 (7) 0.03464 (8) 0.00444 (4) 0.00201 (5) −0.00155 (5)
Cl2 0.0536 (4) 0.0489 (3) 0.0471 (4) 0.0086 (3) 0.0146 (3) 0.0040 (3)
Cl3 0.0391 (3) 0.0587 (4) 0.0548 (4) 0.0054 (3) −0.0051 (3) −0.0076 (3)
Cl4 0.0744 (5) 0.0302 (3) 0.0516 (4) −0.0016 (3) 0.0043 (3) 0.0013 (3)
N3 0.0425 (11) 0.0322 (10) 0.0460 (13) 0.0034 (8) 0.0052 (9) 0.0048 (9)
N1 0.0362 (10) 0.0395 (11) 0.0506 (13) 0.0126 (9) 0.0015 (9) −0.0053 (10)
N4 0.0457 (11) 0.0351 (10) 0.0391 (12) 0.0082 (9) 0.0066 (9) 0.0065 (9)
O1 0.0432 (11) 0.0652 (13) 0.0720 (15) 0.0236 (9) −0.0080 (9) −0.0256 (11)
N2 0.0391 (11) 0.0318 (10) 0.0430 (12) 0.0037 (8) 0.0037 (9) −0.0021 (9)
N5 0.0520 (12) 0.0377 (11) 0.0409 (12) 0.0028 (9) 0.0027 (10) 0.0020 (9)
N6 0.0485 (12) 0.0326 (10) 0.0461 (13) −0.0012 (9) 0.0073 (10) −0.0015 (9)
C24 0.0470 (14) 0.0371 (12) 0.0395 (14) 0.0075 (10) 0.0027 (11) −0.0068 (11)
C28 0.0429 (13) 0.0330 (12) 0.0404 (14) 0.0036 (10) 0.0035 (11) 0.0002 (10)
C30 0.0434 (13) 0.0342 (12) 0.0401 (14) 0.0112 (10) 0.0086 (11) 0.0028 (10)
C34 0.0402 (12) 0.0327 (11) 0.0403 (14) 0.0009 (9) 0.0038 (10) −0.0003 (10)
C36 0.089 (2) 0.0353 (14) 0.066 (2) 0.0183 (14) 0.0260 (18) 0.0078 (14)
C39 0.0411 (12) 0.0286 (11) 0.0395 (13) 0.0043 (9) 0.0031 (10) 0.0004 (10)
O2 0.0848 (14) 0.0400 (10) 0.0428 (11) −0.0019 (10) −0.0029 (10) 0.0058 (8)
C44 0.0428 (13) 0.0418 (13) 0.0410 (14) 0.0001 (10) 0.0033 (11) −0.0061 (11)
C45 0.0425 (13) 0.0333 (12) 0.0408 (14) 0.0063 (10) 0.0043 (11) −0.0031 (10)
C48 0.0502 (15) 0.0446 (14) 0.0546 (17) 0.0031 (11) 0.0083 (13) 0.0147 (13)
C49 0.0559 (16) 0.0494 (15) 0.0398 (15) −0.0103 (12) 0.0076 (12) −0.0076 (12)
C50 0.0520 (15) 0.0390 (13) 0.0576 (18) 0.0066 (11) 0.0086 (13) 0.0029 (12)
C56 0.0549 (16) 0.0630 (18) 0.0492 (17) −0.0003 (14) 0.0125 (14) 0.0134 (14)
C57 0.0387 (13) 0.0377 (12) 0.0529 (16) 0.0060 (10) 0.0048 (11) −0.0016 (11)
C58 0.0549 (16) 0.0541 (16) 0.0433 (16) 0.0101 (13) −0.0042 (13) −0.0101 (13)
C60 0.0598 (17) 0.0394 (14) 0.0585 (18) −0.0021 (12) 0.0103 (14) 0.0059 (13)
C66 0.0680 (18) 0.0403 (14) 0.0548 (18) 0.0008 (13) 0.0175 (14) −0.0077 (13)
C67 0.0478 (14) 0.0401 (13) 0.0481 (16) −0.0031 (11) 0.0060 (12) −0.0061 (12)
C68 0.0437 (14) 0.0497 (15) 0.0589 (18) 0.0062 (11) 0.0071 (13) 0.0067 (13)
C72 0.0476 (16) 0.082 (2) 0.0579 (19) 0.0258 (15) 0.0084 (14) 0.0096 (16)
C74 0.083 (2) 0.074 (2) 0.054 (2) −0.0226 (18) −0.0092 (18) 0.0093 (17)
C76 0.079 (2) 0.0628 (19) 0.060 (2) 0.0431 (17) 0.0238 (17) 0.0182 (16)
C77 0.0392 (14) 0.0551 (16) 0.0597 (19) 0.0068 (12) −0.0026 (13) −0.0007 (14)
C78 0.0563 (16) 0.0450 (14) 0.0503 (16) 0.0104 (12) 0.0152 (13) 0.0003 (12)
C81 0.0697 (19) 0.0482 (15) 0.0518 (18) −0.0029 (14) 0.0162 (15) −0.0075 (13)
C83 0.0594 (17) 0.0545 (16) 0.0469 (17) −0.0102 (13) 0.0011 (14) −0.0011 (13)
C87 0.088 (2) 0.0374 (14) 0.064 (2) 0.0077 (15) 0.0093 (17) −0.0080 (14)
C88 0.081 (2) 0.0558 (18) 0.057 (2) 0.0181 (16) 0.0106 (17) −0.0194 (15)
C89 0.081 (2) 0.079 (2) 0.061 (2) 0.0025 (18) 0.0315 (18) −0.0168 (18)
C91 0.123 (4) 0.098 (3) 0.041 (2) −0.040 (3) 0.008 (2) −0.004 (2)
C92 0.0546 (17) 0.0670 (19) 0.0555 (19) 0.0048 (14) −0.0121 (14) −0.0055 (15)
C93 0.0653 (19) 0.0602 (18) 0.0526 (18) 0.0054 (14) 0.0235 (15) −0.0003 (15)
C96 0.064 (2) 0.080 (2) 0.059 (2) −0.0016 (17) 0.0114 (16) −0.0135 (17)
C99 0.096 (3) 0.094 (3) 0.061 (2) −0.014 (2) 0.032 (2) −0.024 (2)
C100 0.093 (2) 0.0343 (14) 0.082 (3) −0.0109 (15) 0.018 (2) 0.0003 (16)
C102 0.130 (3) 0.0441 (18) 0.080 (3) −0.0266 (19) 0.022 (2) −0.0168 (18)
C105 0.102 (3) 0.0493 (17) 0.061 (2) −0.0202 (17) 0.0121 (19) −0.0149 (16)
O3 0.0663 (13) 0.0632 (12) 0.0468 (11) 0.0267 (10) 0.0195 (10) 0.0191 (10)

Geometric parameters (Å, º)

Sm1—N1 2.578 (2) C56—H56 0.9300
Sm1—N2 2.634 (2) C57—C77 1.381 (4)
Sm1—N6 2.649 (2) C57—H57 0.9300
Sm1—N4 2.668 (2) C58—C92 1.384 (4)
Sm1—N5 2.673 (2) C58—H58 0.9300
Sm1—N3 2.713 (2) C60—C100 1.371 (4)
Sm1—Cl3 2.7501 (9) C60—H60 0.9300
Sm1—Cl4 2.7658 (9) C66—C87 1.386 (4)
Sm1—Cl2 2.8114 (10) C66—H66 0.9300
N3—C48 1.331 (3) C67—C105 1.378 (4)
N3—C34 1.356 (3) C68—C72 1.386 (4)
N1—C45 1.276 (3) C68—H68 0.9300
N1—O1 1.385 (2) C72—C76 1.361 (5)
N4—C39 1.276 (3) C72—H72 0.9300
N4—O3 1.379 (3) C74—C91 1.373 (5)
O1—H1 0.8200 C74—C83 1.370 (4)
N2—C57 1.338 (3) C74—H74 0.9300
N2—C28 1.348 (3) C76—H76 0.9300
N5—C44 1.280 (3) C77—C92 1.366 (4)
N5—O2 1.387 (3) C77—H77 0.9300
N6—C60 1.340 (3) C78—C93 1.376 (4)
N6—C67 1.343 (3) C78—H78 0.9300
C24—C66 1.373 (4) C81—C89 1.372 (4)
C24—C81 1.384 (4) C81—H81 0.9300
C24—C45 1.482 (3) C83—H83 0.9300
C28—C58 1.380 (4) C87—C88 1.350 (4)
C28—C45 1.482 (3) C87—H87 0.9300
C30—C50 1.377 (4) C88—C89 1.365 (5)
C30—C68 1.381 (4) C88—H88 0.9300
C30—C39 1.490 (3) C89—H89 0.9300
C34—C78 1.380 (3) C91—C99 1.366 (6)
C34—C39 1.472 (3) C91—H91 0.9300
C36—C76 1.363 (5) C92—H92 0.9300
C36—C50 1.388 (4) C93—H93 0.9300
C36—H36 0.9300 C96—C99 1.388 (5)
O2—H2 0.8200 C96—H96 0.9300
C44—C49 1.479 (4) C99—H99 0.9300
C44—C67 1.484 (4) C100—C102 1.349 (5)
C48—C56 1.376 (4) C100—H100 0.9300
C48—H48 0.9300 C102—C105 1.393 (5)
C49—C96 1.392 (4) C102—H102 0.9300
C49—C83 1.397 (4) C105—H105 0.9300
C50—H50 0.9300 O3—H3 0.8200
C56—C93 1.369 (4)
N1—Sm1—N2 60.96 (6) C96—C49—C83 119.2 (3)
N1—Sm1—N6 146.13 (7) C96—C49—C44 120.2 (3)
N2—Sm1—N6 140.66 (6) C83—C49—C44 120.5 (2)
N1—Sm1—N4 121.34 (7) C30—C50—C36 119.5 (3)
N2—Sm1—N4 71.97 (7) C30—C50—H50 120.2
N6—Sm1—N4 68.71 (7) C36—C50—H50 120.2
N1—Sm1—N5 126.41 (7) C93—C56—C48 118.5 (3)
N2—Sm1—N5 139.50 (7) C93—C56—H56 120.7
N6—Sm1—N5 59.63 (7) C48—C56—H56 120.7
N4—Sm1—N5 111.97 (7) N2—C57—C77 123.4 (2)
N1—Sm1—N3 137.56 (7) N2—C57—H57 118.3
N2—Sm1—N3 83.11 (7) C77—C57—H57 118.3
N6—Sm1—N3 76.24 (7) C28—C58—C92 119.6 (3)
N4—Sm1—N3 59.12 (6) C28—C58—H58 120.2
N5—Sm1—N3 67.77 (7) C92—C58—H58 120.2
N1—Sm1—Cl3 74.68 (6) N6—C60—C100 123.6 (3)
N2—Sm1—Cl3 135.50 (5) N6—C60—H60 118.2
N6—Sm1—Cl3 77.87 (5) C100—C60—H60 118.2
N4—Sm1—Cl3 136.25 (5) C24—C66—C87 119.5 (3)
N5—Sm1—Cl3 70.91 (6) C24—C66—H66 120.3
N3—Sm1—Cl3 138.19 (5) C87—C66—H66 120.3
N1—Sm1—Cl4 69.59 (5) N6—C67—C105 122.4 (3)
N2—Sm1—Cl4 76.92 (5) N6—C67—C44 117.1 (2)
N6—Sm1—Cl4 130.98 (5) C105—C67—C44 120.5 (3)
N4—Sm1—Cl4 131.71 (5) C30—C68—C72 118.9 (3)
N5—Sm1—Cl4 71.60 (5) C30—C68—H68 120.5
N3—Sm1—Cl4 81.51 (5) C72—C68—H68 120.5
Cl3—Sm1—Cl4 91.54 (4) C76—C72—C68 120.7 (3)
N1—Sm1—Cl2 69.82 (5) C76—C72—H72 119.6
N2—Sm1—Cl2 82.21 (5) C68—C72—H72 119.6
N6—Sm1—Cl2 86.06 (5) C91—C74—C83 119.4 (4)
N4—Sm1—Cl2 71.06 (5) C91—C74—H74 120.3
N5—Sm1—Cl2 138.12 (5) C83—C74—H74 120.3
N3—Sm1—Cl2 130.19 (5) C72—C76—C36 120.4 (3)
Cl3—Sm1—Cl2 79.46 (3) C72—C76—H76 119.8
Cl4—Sm1—Cl2 139.37 (3) C36—C76—H76 119.8
C48—N3—C34 116.5 (2) C92—C77—C57 119.2 (3)
C48—N3—Sm1 121.95 (16) C92—C77—H77 120.4
C34—N3—Sm1 118.93 (16) C57—C77—H77 120.4
C45—N1—O1 113.35 (19) C93—C78—C34 119.4 (2)
C45—N1—Sm1 126.08 (15) C93—C78—H78 120.3
O1—N1—Sm1 120.47 (15) C34—C78—H78 120.3
C39—N4—O3 112.88 (18) C89—C81—C24 120.4 (3)
C39—N4—Sm1 124.81 (16) C89—C81—H81 119.8
O3—N4—Sm1 122.25 (13) C24—C81—H81 119.8
N1—O1—H1 109.5 C74—C83—C49 120.5 (3)
C57—N2—C28 117.1 (2) C74—C83—H83 119.8
C57—N2—Sm1 122.81 (16) C49—C83—H83 119.8
C28—N2—Sm1 119.70 (15) C88—C87—C66 121.4 (3)
C44—N5—O2 113.0 (2) C88—C87—H87 119.3
C44—N5—Sm1 124.96 (17) C66—C87—H87 119.3
O2—N5—Sm1 121.83 (14) C87—C88—C89 119.3 (3)
C60—N6—C67 117.1 (2) C87—C88—H88 120.3
C60—N6—Sm1 120.33 (18) C89—C88—H88 120.3
C67—N6—Sm1 122.54 (16) C88—C89—C81 120.5 (3)
C66—C24—C81 118.8 (2) C88—C89—H89 119.7
C66—C24—C45 120.9 (2) C81—C89—H89 119.7
C81—C24—C45 120.2 (2) C99—C91—C74 121.5 (3)
N2—C28—C58 122.2 (2) C99—C91—H91 119.2
N2—C28—C45 117.1 (2) C74—C91—H91 119.2
C58—C28—C45 120.7 (2) C77—C92—C58 118.3 (3)
C50—C30—C68 120.3 (2) C77—C92—H92 120.9
C50—C30—C39 120.6 (2) C58—C92—H92 120.9
C68—C30—C39 119.1 (2) C56—C93—C78 118.8 (3)
N3—C34—C78 122.3 (2) C56—C93—H93 120.6
N3—C34—C39 116.2 (2) C78—C93—H93 120.6
C78—C34—C39 121.5 (2) C99—C96—C49 119.7 (3)
C76—C36—C50 120.1 (3) C99—C96—H96 120.1
C76—C36—H36 119.9 C49—C96—H96 120.1
C50—C36—H36 119.9 C91—C99—C96 119.7 (4)
N4—C39—C34 116.61 (19) C91—C99—H99 120.2
N4—C39—C30 122.7 (2) C96—C99—H99 120.2
C34—C39—C30 120.7 (2) C102—C100—C60 119.0 (3)
N5—O2—H2 109.5 C102—C100—H100 120.5
N5—C44—C49 123.6 (2) C60—C100—H100 120.5
N5—C44—C67 115.4 (2) C100—C102—C105 119.1 (3)
C49—C44—C67 121.1 (2) C100—C102—H102 120.4
N1—C45—C28 115.1 (2) C105—C102—H102 120.4
N1—C45—C24 123.6 (2) C67—C105—C102 118.8 (3)
C28—C45—C24 121.3 (2) C67—C105—H105 120.6
N3—C48—C56 124.3 (2) C102—C105—H105 120.6
N3—C48—H48 117.9 N4—O3—H3 109.5
C56—C48—H48 117.9

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···Cl3 0.82 2.22 2.960 (2) 150
O2—H2···Cl4 0.82 2.18 2.920 (2) 150
O3—H3···Cl2 0.82 2.18 2.920 (2) 149

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5061).

References

  1. Bruker (2000). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Holynska, M. & Dehnen, S. (2011). Inorg. Chem. Commun. 14, 1290–1292.
  3. Korpi, H., Polamo, M., Leskela, M. & Repo, T. (2005). Inorg. Chem. Commun. 8, 1181–1184.
  4. Liu, G.-X., Guo, W., Nishihara, S. & Ren, X.-M. (2011). Inorg. Chim. Acta, 368, 165–169.
  5. Milios, C. J., Stamatatos, T. C., Kyritsis, P., Terzis, A., Raptopoulou, C. P., Vicente, R., Escuer, A. & Perlepes, S. P. (2004). Eur. J. Inorg. Chem. pp. 2885–2901. [DOI] [PubMed]
  6. Papatriantafyllopoulou, C., Aromi, G., Tasiopoulos, A. J., Nastopoulos, V., Raptopoulou, C. P., Teat, S. J., Escuer, A. & Perlepes, S. P. (2007). Eur. J. Inorg. Chem. pp. 2761–2774.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stamatatos, T. C., Vlahopoulou, J. C., Sanakis, Y., Raptopoulou, C. P., Psycharis, V., Boudalis, A. K. & Perlepes, S. P. (2006). Inorg. Chem. Commun. 9, 814–818.
  9. Xiang, J., Li, Q. & Mei, P. (2006). Acta Cryst. E62, m2348–m2349.
  10. Yan, J. & Liu, G.-X. (2009). Acta Cryst. E65, m641. [DOI] [PMC free article] [PubMed]
  11. Yin, J.-Z. & Liu, G.-X. (2009). Acta Cryst. E65, m155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008100/tk5061sup1.cif

e-68-0m344-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008100/tk5061Isup2.hkl

e-68-0m344-Isup2.hkl (418.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES