Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 4;68(Pt 3):o575. doi: 10.1107/S1600536812003686

2-Benzyl-3-phenyl-1-(pyridin-2-yl)propan-1-one

Muhammad Naveed Umar a, Mohammad Shoaib a, Seik Weng Ng b,*
PMCID: PMC3297302  PMID: 22412492

Abstract

Mol­ecules of the title compound, C21H19NO, assume an approximate propellar shape, with the three aromatic rings being nearly perpendicularly aligned with respect to the plane formed by the C atoms that are connected to the methine C atom [dihedral angles: pyridyl 79.82 (4)°, phenyl 80.12 (3)° and phenyl 86.93 (3)°].

Related literature  

For background to fast aldol reactions, see: Nugent et al. (2010).graphic file with name e-68-0o575-scheme1.jpg

Experimental  

Crystal data  

  • C21H19NO

  • M r = 301.37

  • Monoclinic, Inline graphic

  • a = 15.1569 (3) Å

  • b = 5.6333 (1) Å

  • c = 19.5468 (4) Å

  • β = 109.295 (2)°

  • V = 1575.22 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.840, T max = 0.942

  • 25210 measured reflections

  • 3299 independent reflections

  • 3133 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.098

  • S = 1.04

  • 3299 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812003686/bt5803sup1.cif

e-68-0o575-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003686/bt5803Isup2.hkl

e-68-0o575-Isup2.hkl (161.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003686/bt5803Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Higher Education Commission of Pakistan and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

supplementary crystallographic information

Comment

2-Benzyl-3-phenyl-1-(pyridin-2-yl)propan-1-one (Scheme I), in the optically active form, was synthesized for use in fast aldol condensations (Nugent et al., 2010). The molecule assumes an approximate propellar shape (Fig. 1), with the three aromatic rings being nearly perpendicularly aligned at with respect to the plane formed by the C atoms that are connected to the methine C atom [dihedral angles: pyridyl 79.82 (4), phenyl 80.12 (3), phenyl 86.93 (3)°].

Experimental

In a 250 ml flask was added sodium borohydride (4 equiv, 1.2 mg, 48 mmol) in anhydrous toluene (40 ml) followed by the addition of 18-crown-6 (0.1 equiv, 0.32 mg, 1.2 mmol), and acetyl pyridine (1 equiv, 1.35 ml, 12 mmol). Benzyl bromide (2.5 equiv, 3.6 ml, 30 mmol) was added. The reaction mixture was stirred at 323 K for 5 h under an inert atmosphere. The reaction was monitored by TLC and GC. The reaction was quenched by adding saturated ammonium chloride. The organic compound was extracted with ethyl acetate. The organic layer was dried over sodium sulfate and the solvent removed to give a yellow oil. This was submitted to flash chromatography and eluted with 5% ethyl acetate/hexane to give the desired ketone product (70% yield).

Refinement

H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C21H19NO at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C21H19NO F(000) = 640
Mr = 301.37 Dx = 1.271 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 14175 reflections
a = 15.1569 (3) Å θ = 3.1–76.1°
b = 5.6333 (1) Å µ = 0.60 mm1
c = 19.5468 (4) Å T = 100 K
β = 109.295 (2)° Block, colourless
V = 1575.22 (5) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 3299 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 3133 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
Detector resolution: 10.4041 pixels mm-1 θmax = 76.3°, θmin = 3.2°
ω scans h = −19→19
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −7→5
Tmin = 0.840, Tmax = 0.942 l = −24→24
25210 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.5533P] where P = (Fo2 + 2Fc2)/3
3299 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.21 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.52050 (5) 0.37525 (13) 0.78840 (4) 0.01980 (17)
N1 0.46273 (6) 0.74653 (15) 0.63746 (5) 0.0198 (2)
C1 0.42604 (8) 0.7372 (2) 0.56524 (6) 0.0238 (2)
H1 0.4365 0.8677 0.5381 0.029*
C2 0.37344 (8) 0.5477 (2) 0.52749 (6) 0.0238 (2)
H2 0.3482 0.5497 0.4761 0.029*
C3 0.35863 (8) 0.3560 (2) 0.56657 (6) 0.0234 (2)
H3 0.3218 0.2252 0.5425 0.028*
C4 0.39850 (7) 0.35810 (19) 0.64159 (6) 0.0199 (2)
H4 0.3908 0.2274 0.6698 0.024*
C5 0.45003 (7) 0.55637 (17) 0.67445 (5) 0.0156 (2)
C6 0.49749 (6) 0.56118 (17) 0.75561 (5) 0.0149 (2)
C7 0.51069 (7) 0.80051 (17) 0.79253 (5) 0.0146 (2)
H7 0.5282 0.9173 0.7607 0.018*
C8 0.58912 (7) 0.79632 (18) 0.86598 (5) 0.0162 (2)
H8A 0.5892 0.9489 0.8911 0.019*
H8B 0.5763 0.6684 0.8961 0.019*
C9 0.68460 (7) 0.75692 (17) 0.85936 (5) 0.0152 (2)
C10 0.72381 (7) 0.92961 (18) 0.82695 (5) 0.0173 (2)
H10 0.6902 1.0716 0.8093 0.021*
C11 0.81153 (7) 0.89629 (19) 0.82020 (5) 0.0198 (2)
H11 0.8372 1.0150 0.7978 0.024*
C12 0.86173 (7) 0.68974 (19) 0.84614 (5) 0.0204 (2)
H12 0.9218 0.6672 0.8418 0.024*
C13 0.82336 (7) 0.51680 (18) 0.87838 (5) 0.0197 (2)
H13 0.8573 0.3755 0.8963 0.024*
C14 0.73529 (7) 0.54951 (18) 0.88463 (5) 0.0173 (2)
H14 0.7094 0.4293 0.9063 0.021*
C15 0.41552 (7) 0.87940 (17) 0.79944 (5) 0.0163 (2)
H15A 0.4214 1.0450 0.8173 0.020*
H15B 0.3674 0.8773 0.7507 0.020*
C16 0.38254 (7) 0.72582 (17) 0.84959 (5) 0.0159 (2)
C17 0.32976 (7) 0.52092 (18) 0.82459 (5) 0.0180 (2)
H17 0.3112 0.4813 0.7746 0.022*
C18 0.30400 (7) 0.37407 (18) 0.87213 (6) 0.0197 (2)
H18 0.2680 0.2356 0.8544 0.024*
C19 0.33078 (7) 0.42930 (19) 0.94531 (6) 0.0211 (2)
H19 0.3140 0.3278 0.9778 0.025*
C20 0.38230 (8) 0.6343 (2) 0.97072 (6) 0.0220 (2)
H20 0.4005 0.6737 1.0207 0.026*
C21 0.40717 (7) 0.78150 (18) 0.92306 (6) 0.0192 (2)
H21 0.4415 0.9224 0.9408 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0225 (4) 0.0148 (4) 0.0208 (4) 0.0004 (3) 0.0055 (3) 0.0034 (3)
N1 0.0237 (4) 0.0177 (4) 0.0170 (4) −0.0013 (3) 0.0055 (3) 0.0008 (3)
C1 0.0300 (6) 0.0227 (5) 0.0173 (5) 0.0001 (4) 0.0060 (4) 0.0025 (4)
C2 0.0255 (5) 0.0263 (6) 0.0161 (5) 0.0040 (4) 0.0021 (4) −0.0016 (4)
C3 0.0218 (5) 0.0211 (5) 0.0235 (5) −0.0015 (4) 0.0024 (4) −0.0054 (4)
C4 0.0196 (5) 0.0169 (5) 0.0225 (5) −0.0012 (4) 0.0061 (4) −0.0005 (4)
C5 0.0146 (4) 0.0152 (5) 0.0172 (5) 0.0017 (3) 0.0054 (4) −0.0002 (4)
C6 0.0127 (4) 0.0153 (5) 0.0177 (5) −0.0008 (3) 0.0062 (4) 0.0008 (4)
C7 0.0156 (4) 0.0140 (4) 0.0138 (4) −0.0001 (3) 0.0043 (4) 0.0013 (3)
C8 0.0165 (5) 0.0179 (5) 0.0138 (4) −0.0009 (4) 0.0043 (4) −0.0007 (3)
C9 0.0163 (5) 0.0173 (5) 0.0110 (4) −0.0024 (4) 0.0029 (3) −0.0026 (3)
C10 0.0196 (5) 0.0168 (5) 0.0141 (4) −0.0011 (4) 0.0037 (4) −0.0001 (4)
C11 0.0217 (5) 0.0223 (5) 0.0166 (5) −0.0053 (4) 0.0077 (4) −0.0015 (4)
C12 0.0172 (5) 0.0250 (5) 0.0196 (5) −0.0020 (4) 0.0071 (4) −0.0057 (4)
C13 0.0200 (5) 0.0181 (5) 0.0191 (5) 0.0013 (4) 0.0040 (4) −0.0027 (4)
C14 0.0197 (5) 0.0169 (5) 0.0147 (4) −0.0024 (4) 0.0048 (4) −0.0007 (4)
C15 0.0166 (5) 0.0151 (5) 0.0171 (5) 0.0019 (3) 0.0052 (4) 0.0018 (3)
C16 0.0138 (4) 0.0157 (5) 0.0185 (5) 0.0030 (3) 0.0056 (4) 0.0016 (4)
C17 0.0164 (4) 0.0196 (5) 0.0169 (4) 0.0003 (4) 0.0040 (4) −0.0003 (4)
C18 0.0169 (5) 0.0183 (5) 0.0230 (5) −0.0018 (4) 0.0054 (4) 0.0007 (4)
C19 0.0203 (5) 0.0226 (5) 0.0219 (5) 0.0003 (4) 0.0092 (4) 0.0048 (4)
C20 0.0237 (5) 0.0262 (5) 0.0174 (5) −0.0005 (4) 0.0084 (4) −0.0007 (4)
C21 0.0197 (5) 0.0177 (5) 0.0204 (5) −0.0012 (4) 0.0071 (4) −0.0023 (4)

Geometric parameters (Å, º)

O1—C6 1.2172 (12) C10—H10 0.9500
N1—C1 1.3365 (14) C11—C12 1.3910 (15)
N1—C5 1.3414 (13) C11—H11 0.9500
C1—C2 1.3897 (16) C12—C13 1.3881 (15)
C1—H1 0.9500 C12—H12 0.9500
C2—C3 1.3829 (16) C13—C14 1.3922 (14)
C2—H2 0.9500 C13—H13 0.9500
C3—C4 1.3893 (15) C14—H14 0.9500
C3—H3 0.9500 C15—C16 1.5111 (13)
C4—C5 1.3922 (14) C15—H15A 0.9900
C4—H4 0.9500 C15—H15B 0.9900
C5—C6 1.5103 (13) C16—C21 1.3950 (14)
C6—C7 1.5110 (13) C16—C17 1.3974 (14)
C7—C8 1.5320 (13) C17—C18 1.3928 (14)
C7—C15 1.5573 (13) C17—H17 0.9500
C7—H7 1.0000 C18—C19 1.3869 (15)
C8—C9 1.5113 (13) C18—H18 0.9500
C8—H8A 0.9900 C19—C20 1.3905 (15)
C8—H8B 0.9900 C19—H19 0.9500
C9—C10 1.3963 (14) C20—C21 1.3892 (15)
C9—C14 1.3960 (14) C20—H20 0.9500
C10—C11 1.3916 (14) C21—H21 0.9500
C1—N1—C5 117.01 (9) C12—C11—C10 120.20 (9)
N1—C1—C2 123.81 (10) C12—C11—H11 119.9
N1—C1—H1 118.1 C10—C11—H11 119.9
C2—C1—H1 118.1 C13—C12—C11 119.46 (9)
C3—C2—C1 118.42 (10) C13—C12—H12 120.3
C3—C2—H2 120.8 C11—C12—H12 120.3
C1—C2—H2 120.8 C12—C13—C14 120.31 (10)
C2—C3—C4 118.89 (10) C12—C13—H13 119.8
C2—C3—H3 120.6 C14—C13—H13 119.8
C4—C3—H3 120.6 C13—C14—C9 120.75 (9)
C3—C4—C5 118.41 (10) C13—C14—H14 119.6
C3—C4—H4 120.8 C9—C14—H14 119.6
C5—C4—H4 120.8 C16—C15—C7 114.03 (8)
N1—C5—C4 123.40 (9) C16—C15—H15A 108.7
N1—C5—C6 116.65 (8) C7—C15—H15A 108.7
C4—C5—C6 119.92 (9) C16—C15—H15B 108.7
O1—C6—C5 119.46 (9) C7—C15—H15B 108.7
O1—C6—C7 123.14 (8) H15A—C15—H15B 107.6
C5—C6—C7 117.36 (8) C21—C16—C17 118.25 (9)
C6—C7—C8 111.91 (8) C21—C16—C15 120.38 (9)
C6—C7—C15 108.41 (8) C17—C16—C15 121.33 (9)
C8—C7—C15 112.17 (8) C18—C17—C16 120.77 (9)
C6—C7—H7 108.1 C18—C17—H17 119.6
C8—C7—H7 108.1 C16—C17—H17 119.6
C15—C7—H7 108.1 C19—C18—C17 120.25 (10)
C9—C8—C7 112.99 (8) C19—C18—H18 119.9
C9—C8—H8A 109.0 C17—C18—H18 119.9
C7—C8—H8A 109.0 C18—C19—C20 119.55 (10)
C9—C8—H8B 109.0 C18—C19—H19 120.2
C7—C8—H8B 109.0 C20—C19—H19 120.2
H8A—C8—H8B 107.8 C21—C20—C19 120.06 (10)
C10—C9—C14 118.47 (9) C21—C20—H20 120.0
C10—C9—C8 119.98 (9) C19—C20—H20 120.0
C14—C9—C8 121.55 (9) C20—C21—C16 121.10 (10)
C11—C10—C9 120.82 (9) C20—C21—H21 119.5
C11—C10—H10 119.6 C16—C21—H21 119.5
C9—C10—H10 119.6
C5—N1—C1—C2 2.48 (16) C14—C9—C10—C11 −0.23 (14)
N1—C1—C2—C3 −0.61 (17) C8—C9—C10—C11 −179.84 (9)
C1—C2—C3—C4 −1.43 (16) C9—C10—C11—C12 −0.31 (15)
C2—C3—C4—C5 1.50 (16) C10—C11—C12—C13 0.38 (15)
C1—N1—C5—C4 −2.38 (15) C11—C12—C13—C14 0.09 (15)
C1—N1—C5—C6 175.79 (9) C12—C13—C14—C9 −0.64 (15)
C3—C4—C5—N1 0.44 (15) C10—C9—C14—C13 0.70 (14)
C3—C4—C5—C6 −177.67 (9) C8—C9—C14—C13 −179.69 (9)
N1—C5—C6—O1 −151.38 (9) C6—C7—C15—C16 66.21 (10)
C4—C5—C6—O1 26.85 (13) C8—C7—C15—C16 −57.86 (11)
N1—C5—C6—C7 30.88 (12) C7—C15—C16—C21 90.50 (11)
C4—C5—C6—C7 −150.88 (9) C7—C15—C16—C17 −87.20 (11)
O1—C6—C7—C8 24.09 (13) C21—C16—C17—C18 −1.18 (15)
C5—C6—C7—C8 −158.27 (8) C15—C16—C17—C18 176.56 (9)
O1—C6—C7—C15 −100.14 (10) C16—C17—C18—C19 −0.18 (15)
C5—C6—C7—C15 77.51 (10) C17—C18—C19—C20 0.99 (16)
C6—C7—C8—C9 66.67 (10) C18—C19—C20—C21 −0.42 (16)
C15—C7—C8—C9 −171.23 (8) C19—C20—C21—C16 −0.98 (16)
C7—C8—C9—C10 66.63 (11) C17—C16—C21—C20 1.76 (15)
C7—C8—C9—C14 −112.97 (10) C15—C16—C21—C20 −176.00 (9)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5803).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Nugent, T. C., Umar, M. N. & Bibi, A. (2010). Org. Biomol. Chem. 8, 4085–4089. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812003686/bt5803sup1.cif

e-68-0o575-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003686/bt5803Isup2.hkl

e-68-0o575-Isup2.hkl (161.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003686/bt5803Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES