Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 4;68(Pt 3):o580. doi: 10.1107/S1600536812003716

2-(Biphenyl-4-yl)propan-2-ol

Eric Modau a, David C Liles a, Petrus H van Rooyen a,*
PMCID: PMC3297307  PMID: 22412497

Abstract

The title compound, C15H16O, crystallizes with two independent mol­ecules in the asymmetric unit. Due to the space-group symmetry, this results in the formation of a tetra­mer where the four mol­ecules are connected by O—H⋯O hydrogen bonds. The mol­ecules pack parallel to the c axis. Both mol­ecules in the asymmetric unit are nonplanar and the dihedral angles between connected aromatic rings in each mol­ecule are 7.96 (12) and 9.75 (13)°. This contrasts with the gas phase density functional theory (DFT) optimized conformation, where this dihedral angle is 39.33°.

Related literature  

For some previous studies of biphenyl derivitives, see: Britton & Gleason (1991); Britton & Young (2003); Brock (1980); Brock & Haller (1980); Mohamed et al. (2003). For details of GAUSSIAN03, see: Frisch et al. (2003).graphic file with name e-68-0o580-scheme1.jpg

Experimental  

Crystal data  

  • C15H16O

  • M r = 212.28

  • Monoclinic, Inline graphic

  • a = 12.4406 (14) Å

  • b = 15.5754 (18) Å

  • c = 25.741 (3) Å

  • β = 102.332 (2)°

  • V = 4872.7 (10) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.46 × 0.36 × 0.08 mm

Data collection  

  • Bruker P4 diffractometer with SMART 1000 CCD area detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.931, T max = 0.994

  • 12927 measured reflections

  • 4590 independent reflections

  • 2859 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.147

  • S = 1.01

  • 4590 reflections

  • 391 parameters

  • 3 restraints

  • All H-atom parameters refined

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003716/zq2152sup1.cif

e-68-0o580-sup1.cif (31.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003716/zq2152Isup2.hkl

e-68-0o580-Isup2.hkl (225KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003716/zq2152Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.90 (1) 1.99 (2) 2.804 (2) 150 (4)
O2—H2A⋯O1 0.90 (1) 2.09 (4) 2.804 (2) 136 (4)
O1—H1B⋯O1i 0.87 (3) 1.90 (3) 2.767 (3) 174 (4)
O2—H2B⋯O2i 0.89 (1) 2.03 (1) 2.926 (3) 177 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the University of Pretoria for financial support.

supplementary crystallographic information

Comment

The studies of the series of biphenyl derivatives have attracted considerable attention for some time now. This included the para-monosubstituted derivatives 4-bromobiphenyl (Brock, 1980) and 4-hydroxylbiphenyl (Brock & Haller, 1980), as well as some para-disubstituted derivatives such as 4,4'-dibromobiphenyl (Mohamed et al., 2003), 4,4'-iodocyanobiphenyl (Britton & Gleason, 1991) and 4,4'-dicyanobiphenyl (Britton & Young, 2003). Particular interest has been shown in their packing motifs as well as the inter-ring dihedral angles which are found to be approximately 40° in the solid state in the majority of structures. The structure of the corresponding 2-(4-biphenyl)-2-propanol compound, was undertaken as part of the investigation into the conformational properties of para monosubstituted and para disubstituted biphenyls. Of significance is that this compound crystallizes in a significantly more planar conformation than what is expected, although it is still non-planar.

2-(4-biphenyl)-2-propanol crystallizes with two independent molecules in the asymmetric unit. The presence of a twofold rotational axis results in the formation of a hydrogen bonded tetramer. The four H atoms of the hydroxyl groups occupy both sets of possible hydrogen positions, illustrated by the two possible bonding schemes (H···OA—H···OB—H) and (H—OA···H—OB···H). Both sets of H atom positions were refined with occupancies of 0.5. The two molecules in the asymmetric unit have similar geometrical parameters. The molecules are non-planar: the two aromatic rings in each molecule are slightly twisted around C—C inter ring bond by 7.96 (3)° and 9.75 (3)°. This contrasts to the gas phase DFT (6–31+G**) optimized conformation where this dihedral angle is 39.33° (GAUSSIAN03, Frisch et al., 2003). The anisotropic displacement ellipsoids and atom labelling for the compound is shown in Fig.1. The lengths of the central C—C bonds connecting the two aromatic rings in each of the two molecules are equal to 1.491 (3) and 1.489 (2) Å. The bond length and bond angle are within the expected values. The H···O distances are 1.99 (2), 2.09 (4), 1.90 (3) and 2.034 (11) Å. The molecules pack parallel to the c axis (Fig. 2). The volume per non H atom in the crystal is 19.03 Å3, in line with that calculated for other biphenyl derivatives structures. This would suggest that the closer packing resulting from the intermolecular hydrogen bonds as well as the more planar biphenyl systems does not significantly change the packing requirements in the crystals.

Experimental

The title compound was obtained from Aldrich Chemical Co. Inc. Crystals were grown from distilled hexane, acetone, benzene, dichloromethane, chloroform, carbon tetrachloride, and acetonitrile in an attempt to search for multiple polymorphs. Several habits were found, viz. prisms, clear plates, and striated plates but all proved to be isostructural. A prism grown from distilled hexane was used for the structure determination.

Geometry optimization for 2-(4-biphenyl)-2-propanol was performed using the program GAUSSIAN03 and applying the B3LYP-functional with the 6-31+G** basis set level (Frisch et al., 2003). This optimized structure displayed no negative vibrational frequencies.

Refinement

All H atom positions were obtained from difference Fourier maps and were freely refined. Isotropic displacement parameters for the H atoms were set at 1.2 times the equivalent isotropic displacement parameter of the atom to which each H atom is bonded (1.5 times for the methyl H atoms). The two independent molecules, plus two further molecules generated by a crystallographic 2-fold rotation axis, form a hydrogen bonded tetramer. The hydroxyl H atoms involved in the hydrogen bonding are, of necessity, disordered and two H atom positions were observed for each hydroxyl group and each hydrogen position was refined with a sof of 0.5.

Figures

Fig. 1.

Fig. 1.

Perspective view of the asymmetric unit of the title compound, with the atom numbering. This shows one of the two possible orientations of the hydrogen bonding scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Drawing of the unit cell content of the title compound.

Crystal data

C15H16O F(000) = 1824
Mr = 212.28 Dx = 1.157 Mg m3
Monoclinic, C2/c Melting point: 366.1 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 12.4406 (14) Å Cell parameters from 4663 reflections
b = 15.5754 (18) Å θ = 2.4–26.0°
c = 25.741 (3) Å µ = 0.07 mm1
β = 102.332 (2)° T = 295 K
V = 4872.7 (10) Å3 Plate, colourless
Z = 16 0.46 × 0.36 × 0.08 mm

Data collection

Bruker P4 diffractometer with SMART 1000 CCD area detector 4590 independent reflections
Radiation source: fine-focus sealed tube 2859 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 8.3 pixels mm-1 θmax = 26.5°, θmin = 2.4°
φ and ω scans h = −15→7
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −18→15
Tmin = 0.931, Tmax = 0.994 l = −31→31
12927 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: difference Fourier map
wR(F2) = 0.147 All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0639P)2 + 1.7634P] where P = (Fo2 + 2Fc2)/3
4590 reflections (Δ/σ)max = 0.001
391 parameters Δρmax = 0.13 e Å3
3 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.22391 (12) 0.49260 (10) 0.05345 (6) 0.0485 (4)
C2 0.28952 (16) 0.44401 (13) 0.09272 (7) 0.0646 (5)
H2 0.3512 (17) 0.4133 (13) 0.0851 (7) 0.078*
C3 0.26765 (16) 0.43652 (13) 0.14308 (7) 0.0650 (5)
H3 0.3152 (16) 0.4000 (13) 0.1686 (8) 0.078*
C4 0.17907 (13) 0.47641 (11) 0.15649 (7) 0.0530 (4)
C5 0.11288 (16) 0.52481 (14) 0.11731 (8) 0.0687 (5)
H5 0.0523 (17) 0.5571 (13) 0.1256 (8) 0.082*
C6 0.13494 (16) 0.53305 (13) 0.06735 (8) 0.0654 (5)
H6 0.0899 (16) 0.5687 (13) 0.0427 (8) 0.078*
C7 0.24761 (13) 0.50013 (10) −0.00067 (6) 0.0510 (4)
C8 0.17499 (17) 0.53907 (14) −0.04217 (8) 0.0715 (6)
H8 0.1095 (18) 0.5621 (14) −0.0353 (8) 0.086*
C9 0.1975 (2) 0.54432 (17) −0.09240 (9) 0.0839 (7)
H9 0.1447 (19) 0.5734 (15) −0.1189 (9) 0.101*
C10 0.2925 (2) 0.51127 (15) −0.10229 (8) 0.0790 (6)
H10 0.3063 (18) 0.5144 (14) −0.1383 (9) 0.095*
C11 0.36620 (19) 0.47263 (16) −0.06195 (8) 0.0795 (6)
H11 0.4342 (19) 0.4466 (14) −0.0681 (8) 0.095*
C12 0.34381 (17) 0.46705 (14) −0.01181 (8) 0.0693 (5)
H12 0.3974 (17) 0.4414 (13) 0.0170 (8) 0.083*
C13 0.15214 (15) 0.46972 (12) 0.21136 (7) 0.0599 (5)
C14 0.2251 (2) 0.40631 (18) 0.24767 (9) 0.0803 (6)
H14A 0.222 (2) 0.3454 (19) 0.2307 (10) 0.120*
H14B 0.199 (2) 0.4014 (17) 0.2819 (11) 0.120*
H14C 0.301 (2) 0.4270 (17) 0.2564 (10) 0.120*
C15 0.1579 (2) 0.55713 (16) 0.23792 (10) 0.0855 (7)
H15A 0.104 (2) 0.6003 (19) 0.2143 (11) 0.128*
H15B 0.236 (2) 0.5802 (18) 0.2442 (11) 0.128*
H15C 0.139 (2) 0.5516 (17) 0.2739 (12) 0.128*
O1 0.03981 (11) 0.44009 (9) 0.20377 (5) 0.0678 (4)
H1A 0.047 (3) 0.3863 (12) 0.1923 (16) 0.081* 0.50
H1B 0.012 (4) 0.443 (2) 0.2319 (15) 0.081* 0.50
C16 0.00267 (14) 0.24680 (11) −0.00238 (8) 0.0573 (4)
C17 0.07693 (17) 0.27485 (15) 0.04215 (9) 0.0787 (6)
H17 0.1405 (19) 0.3030 (15) 0.0365 (8) 0.094*
C18 0.05831 (18) 0.26437 (15) 0.09270 (9) 0.0805 (7)
H18 0.1060 (19) 0.2895 (15) 0.1211 (9) 0.097*
C19 −0.03521 (14) 0.22565 (11) 0.10169 (8) 0.0608 (5)
C20 −0.11092 (17) 0.19968 (15) 0.05718 (9) 0.0774 (6)
H20 −0.1768 (19) 0.1719 (14) 0.0629 (8) 0.093*
C21 −0.09266 (17) 0.20967 (15) 0.00691 (9) 0.0766 (6)
H21 −0.1457 (18) 0.1882 (14) −0.0227 (9) 0.092*
C22 0.02432 (14) 0.25405 (11) −0.05698 (8) 0.0594 (5)
C23 −0.04138 (19) 0.21334 (18) −0.10009 (10) 0.0887 (7)
H23 −0.100 (2) 0.1765 (16) −0.0918 (9) 0.106*
C24 −0.0217 (2) 0.2200 (2) −0.15056 (11) 0.1001 (8)
H24 −0.064 (2) 0.1888 (18) −0.1788 (11) 0.120*
C25 0.0651 (2) 0.26587 (16) −0.15981 (11) 0.0867 (7)
H25 0.0803 (19) 0.2704 (15) −0.1976 (10) 0.104*
C26 0.1323 (2) 0.30524 (17) −0.11834 (11) 0.0952 (7)
H26 0.195 (2) 0.3407 (17) −0.1234 (10) 0.114*
C27 0.1118 (2) 0.29994 (15) −0.06773 (10) 0.0849 (7)
H27 0.1563 (19) 0.3281 (16) −0.0394 (10) 0.102*
C28 −0.05169 (16) 0.20597 (13) 0.15723 (8) 0.0696 (5)
C29 −0.1704 (2) 0.2169 (2) 0.16242 (13) 0.1090 (10)
H29A −0.214 (3) 0.168 (2) 0.1416 (13) 0.163*
H29B −0.173 (3) 0.209 (2) 0.1994 (14) 0.163*
H29C −0.191 (3) 0.276 (2) 0.1486 (14) 0.163*
C30 −0.0115 (3) 0.11470 (18) 0.17181 (12) 0.1097 (10)
H30A −0.053 (3) 0.075 (2) 0.1448 (14) 0.165*
H30B −0.023 (3) 0.103 (2) 0.2069 (14) 0.165*
H30C 0.070 (3) 0.116 (2) 0.1726 (13) 0.165*
O2 0.01619 (14) 0.26127 (10) 0.19536 (6) 0.0871 (5)
H2A 0.000 (4) 0.3133 (16) 0.1811 (19) 0.104* 0.50
H2B 0.007 (5) 0.259 (3) 0.2287 (9) 0.104* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0478 (9) 0.0447 (9) 0.0519 (10) −0.0059 (7) 0.0082 (7) −0.0009 (7)
C2 0.0578 (11) 0.0760 (13) 0.0614 (11) 0.0171 (9) 0.0157 (9) 0.0078 (10)
C3 0.0634 (11) 0.0742 (13) 0.0569 (11) 0.0143 (10) 0.0115 (9) 0.0145 (10)
C4 0.0543 (10) 0.0526 (10) 0.0523 (9) −0.0055 (8) 0.0116 (8) 0.0004 (8)
C5 0.0636 (11) 0.0817 (14) 0.0641 (12) 0.0198 (10) 0.0210 (10) 0.0090 (10)
C6 0.0638 (11) 0.0740 (13) 0.0585 (11) 0.0184 (9) 0.0134 (9) 0.0121 (9)
C7 0.0531 (9) 0.0477 (9) 0.0508 (9) −0.0077 (7) 0.0080 (7) −0.0051 (8)
C8 0.0641 (12) 0.0897 (15) 0.0605 (12) 0.0096 (11) 0.0129 (10) 0.0086 (10)
C9 0.0842 (15) 0.1084 (19) 0.0564 (12) 0.0126 (13) 0.0089 (11) 0.0125 (12)
C10 0.0921 (16) 0.0942 (16) 0.0522 (12) −0.0060 (12) 0.0189 (11) −0.0031 (11)
C11 0.0799 (14) 0.0985 (17) 0.0646 (13) 0.0091 (12) 0.0253 (11) −0.0048 (12)
C12 0.0671 (12) 0.0843 (14) 0.0565 (11) 0.0109 (10) 0.0133 (9) 0.0008 (10)
C13 0.0632 (11) 0.0641 (11) 0.0536 (10) −0.0071 (9) 0.0155 (8) 0.0003 (8)
C14 0.0842 (15) 0.1001 (18) 0.0554 (12) 0.0009 (13) 0.0121 (11) 0.0148 (12)
C15 0.1139 (19) 0.0788 (15) 0.0682 (14) −0.0162 (13) 0.0292 (14) −0.0145 (12)
O1 0.0656 (8) 0.0812 (9) 0.0623 (8) −0.0060 (7) 0.0260 (6) −0.0004 (7)
C16 0.0517 (10) 0.0466 (10) 0.0703 (12) −0.0018 (8) 0.0058 (8) −0.0028 (8)
C17 0.0620 (12) 0.0926 (16) 0.0821 (15) −0.0288 (11) 0.0170 (11) −0.0167 (12)
C18 0.0665 (13) 0.0997 (17) 0.0731 (14) −0.0284 (11) 0.0101 (11) −0.0239 (12)
C19 0.0587 (10) 0.0523 (10) 0.0711 (12) −0.0050 (8) 0.0129 (9) −0.0118 (9)
C20 0.0628 (12) 0.0896 (15) 0.0781 (15) −0.0270 (11) 0.0113 (11) −0.0060 (12)
C21 0.0636 (12) 0.0893 (15) 0.0710 (14) −0.0240 (11) 0.0012 (10) −0.0047 (11)
C22 0.0541 (10) 0.0458 (10) 0.0749 (13) 0.0044 (8) 0.0063 (9) 0.0015 (9)
C23 0.0703 (14) 0.1149 (19) 0.0760 (15) −0.0245 (13) 0.0046 (11) −0.0042 (13)
C24 0.0944 (18) 0.129 (2) 0.0716 (16) −0.0171 (16) 0.0056 (13) −0.0087 (15)
C25 0.0967 (17) 0.0844 (16) 0.0806 (16) 0.0126 (13) 0.0224 (14) 0.0113 (13)
C26 0.1011 (18) 0.0903 (17) 0.102 (2) −0.0217 (14) 0.0382 (16) 0.0034 (15)
C27 0.0867 (15) 0.0809 (15) 0.0872 (17) −0.0247 (12) 0.0190 (13) −0.0080 (12)
C28 0.0766 (12) 0.0622 (12) 0.0710 (13) −0.0150 (10) 0.0182 (10) −0.0169 (10)
C29 0.0908 (18) 0.147 (3) 0.098 (2) −0.0350 (18) 0.0402 (16) −0.0268 (19)
C30 0.182 (3) 0.0733 (17) 0.0754 (16) −0.0030 (19) 0.0314 (19) −0.0039 (13)
O2 0.0979 (11) 0.0883 (11) 0.0762 (11) −0.0292 (9) 0.0213 (9) −0.0268 (9)

Geometric parameters (Å, º)

C1—C2 1.381 (2) C16—C17 1.380 (3)
C1—C6 1.385 (2) C16—C21 1.385 (3)
C1—C7 1.489 (2) C16—C22 1.491 (3)
C2—C3 1.385 (3) C17—C18 1.379 (3)
C2—H2 0.96 (2) C17—H17 0.94 (2)
C3—C4 1.372 (2) C18—C19 1.373 (3)
C3—H3 0.97 (2) C18—H18 0.92 (2)
C4—C5 1.382 (2) C19—C20 1.379 (3)
C4—C13 1.523 (2) C19—C28 1.518 (3)
C5—C6 1.377 (3) C20—C21 1.370 (3)
C5—H5 0.97 (2) C20—H20 0.97 (2)
C6—H6 0.93 (2) C21—H21 0.96 (2)
C7—C8 1.383 (2) C22—C27 1.379 (3)
C7—C12 1.388 (3) C22—C23 1.384 (3)
C8—C9 1.383 (3) C23—C24 1.376 (3)
C8—H8 0.94 (2) C23—H23 0.98 (2)
C9—C10 1.362 (3) C24—C25 1.357 (4)
C9—H9 0.95 (2) C24—H24 0.94 (3)
C10—C11 1.369 (3) C25—C26 1.354 (4)
C10—H10 0.98 (2) C25—H25 1.03 (2)
C11—C12 1.380 (3) C26—C27 1.382 (3)
C11—H11 0.98 (2) C26—H26 0.99 (3)
C12—H12 0.97 (2) C27—H27 0.93 (2)
C13—O1 1.445 (2) C28—O2 1.437 (2)
C13—C15 1.518 (3) C28—C29 1.521 (3)
C13—C14 1.520 (3) C28—C30 1.527 (3)
C14—H14A 1.04 (3) C29—H29A 1.01 (4)
C14—H14B 1.00 (3) C29—H29B 0.97 (4)
C14—H14C 0.97 (3) C29—H29C 1.00 (3)
C15—H15A 1.04 (3) C30—H30A 0.98 (4)
C15—H15B 1.01 (3) C30—H30B 0.96 (3)
C15—H15C 1.01 (3) C30—H30C 1.01 (4)
O1—H1A 0.900 (10) O2—H2A 0.895 (10)
O1—H1B 0.87 (3) O2—H2B 0.893 (10)
C2—C1—C6 116.10 (16) C17—C16—C21 115.77 (19)
C2—C1—C7 121.57 (15) C17—C16—C22 122.35 (17)
C6—C1—C7 122.32 (15) C21—C16—C22 121.87 (17)
C1—C2—C3 121.83 (17) C18—C17—C16 121.90 (19)
C1—C2—H2 119.8 (12) C18—C17—H17 121.1 (13)
C3—C2—H2 118.4 (12) C16—C17—H17 117.0 (14)
C4—C3—C2 121.75 (17) C19—C18—C17 122.01 (19)
C4—C3—H3 120.2 (12) C19—C18—H18 118.4 (14)
C2—C3—H3 118.0 (12) C17—C18—H18 119.2 (14)
C3—C4—C5 116.69 (16) C18—C19—C20 116.20 (19)
C3—C4—C13 123.36 (16) C18—C19—C28 122.48 (17)
C5—C4—C13 119.96 (16) C20—C19—C28 121.16 (17)
C6—C5—C4 121.73 (17) C21—C20—C19 122.00 (19)
C6—C5—H5 118.5 (12) C21—C20—H20 120.8 (13)
C4—C5—H5 119.7 (12) C19—C20—H20 117.2 (13)
C5—C6—C1 121.90 (17) C20—C21—C16 122.09 (19)
C5—C6—H6 118.7 (12) C20—C21—H21 119.2 (13)
C1—C6—H6 119.4 (12) C16—C21—H21 118.6 (13)
C8—C7—C12 116.94 (17) C27—C22—C23 115.7 (2)
C8—C7—C1 122.00 (16) C27—C22—C16 122.54 (18)
C12—C7—C1 121.06 (16) C23—C22—C16 121.79 (18)
C9—C8—C7 121.3 (2) C24—C23—C22 121.9 (2)
C9—C8—H8 120.7 (13) C24—C23—H23 122.5 (14)
C7—C8—H8 118.1 (13) C22—C23—H23 115.4 (14)
C10—C9—C8 120.6 (2) C25—C24—C23 120.9 (2)
C10—C9—H9 122.5 (14) C25—C24—H24 118.5 (17)
C8—C9—H9 116.8 (14) C23—C24—H24 120.4 (17)
C9—C10—C11 119.5 (2) C26—C25—C24 118.7 (3)
C9—C10—H10 119.6 (13) C26—C25—H25 120.4 (13)
C11—C10—H10 121.0 (13) C24—C25—H25 120.9 (13)
C10—C11—C12 120.0 (2) C25—C26—C27 120.6 (2)
C10—C11—H11 121.4 (13) C25—C26—H26 121.5 (15)
C12—C11—H11 118.6 (13) C27—C26—H26 117.8 (15)
C11—C12—C7 121.67 (19) C22—C27—C26 122.1 (2)
C11—C12—H12 119.8 (12) C22—C27—H27 116.9 (15)
C7—C12—H12 118.5 (12) C26—C27—H27 121.0 (15)
O1—C13—C15 107.35 (17) O2—C28—C19 110.14 (15)
O1—C13—C14 108.02 (16) O2—C28—C29 108.26 (18)
C15—C13—C14 109.97 (18) C19—C28—C29 112.9 (2)
O1—C13—C4 107.11 (14) O2—C28—C30 106.0 (2)
C15—C13—C4 110.96 (16) C19—C28—C30 108.45 (18)
C14—C13—C4 113.18 (16) C29—C28—C30 110.8 (2)
C13—C14—H14A 111.6 (14) C28—C29—H29A 106.7 (19)
C13—C14—H14B 108.9 (15) C28—C29—H29B 108 (2)
H14A—C14—H14B 108 (2) H29A—C29—H29B 107 (3)
C13—C14—H14C 110.4 (16) C28—C29—H29C 104 (2)
H14A—C14—H14C 111 (2) H29A—C29—H29C 116 (3)
H14B—C14—H14C 107 (2) H29B—C29—H29C 114 (3)
C13—C15—H15A 110.6 (15) C28—C30—H30A 108 (2)
C13—C15—H15B 109.9 (17) C28—C30—H30B 107 (2)
H15A—C15—H15B 109 (2) H30A—C30—H30B 113 (3)
C13—C15—H15C 109.8 (16) C28—C30—H30C 105 (2)
H15A—C15—H15C 110 (2) H30A—C30—H30C 114 (3)
H15B—C15—H15C 107 (2) H30B—C30—H30C 109 (3)
C13—O1—H1A 100 (3) C28—O2—H2A 102 (3)
C13—O1—H1B 114 (3) C28—O2—H2B 117 (3)
H1A—O1—H1B 114 (4) H2A—O2—H2B 111 (5)
C6—C1—C2—C3 −0.2 (3) C21—C16—C17—C18 1.6 (3)
C7—C1—C2—C3 −179.76 (17) C22—C16—C17—C18 −177.0 (2)
C1—C2—C3—C4 0.6 (3) C16—C17—C18—C19 −0.2 (4)
C2—C3—C4—C5 −0.3 (3) C17—C18—C19—C20 −1.6 (3)
C2—C3—C4—C13 179.94 (18) C17—C18—C19—C28 173.9 (2)
C3—C4—C5—C6 −0.3 (3) C18—C19—C20—C21 1.8 (3)
C13—C4—C5—C6 179.45 (18) C28—C19—C20—C21 −173.8 (2)
C4—C5—C6—C1 0.7 (3) C19—C20—C21—C16 −0.3 (4)
C2—C1—C6—C5 −0.4 (3) C17—C16—C21—C20 −1.4 (3)
C7—C1—C6—C5 179.15 (18) C22—C16—C21—C20 177.3 (2)
C2—C1—C7—C8 171.37 (18) C17—C16—C22—C27 −9.5 (3)
C6—C1—C7—C8 −8.1 (3) C21—C16—C22—C27 171.9 (2)
C2—C1—C7—C12 −7.8 (3) C17—C16—C22—C23 169.1 (2)
C6—C1—C7—C12 172.69 (18) C21—C16—C22—C23 −9.5 (3)
C12—C7—C8—C9 0.2 (3) C27—C22—C23—C24 −1.4 (4)
C1—C7—C8—C9 −178.97 (19) C16—C22—C23—C24 179.9 (2)
C7—C8—C9—C10 −0.2 (4) C22—C23—C24—C25 1.3 (4)
C8—C9—C10—C11 −0.1 (4) C23—C24—C25—C26 0.0 (4)
C9—C10—C11—C12 0.3 (4) C24—C25—C26—C27 −1.0 (4)
C10—C11—C12—C7 −0.2 (3) C23—C22—C27—C26 0.3 (3)
C8—C7—C12—C11 0.0 (3) C16—C22—C27—C26 179.0 (2)
C1—C7—C12—C11 179.18 (18) C25—C26—C27—C22 0.9 (4)
C3—C4—C13—O1 −125.65 (18) C18—C19—C28—O2 23.1 (3)
C5—C4—C13—O1 54.6 (2) C20—C19—C28—O2 −161.64 (19)
C3—C4—C13—C15 117.5 (2) C18—C19—C28—C29 144.2 (2)
C5—C4—C13—C15 −62.3 (2) C20—C19—C28—C29 −40.5 (3)
C3—C4—C13—C14 −6.7 (3) C18—C19—C28—C30 −92.5 (3)
C5—C4—C13—C14 173.51 (19) C20—C19—C28—C30 82.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2 0.90 (1) 1.99 (2) 2.804 (2) 150 (4)
O2—H2A···O1 0.90 (1) 2.09 (4) 2.804 (2) 136 (4)
O1—H1B···O1i 0.87 (3) 1.90 (3) 2.767 (3) 174 (4)
O2—H2B···O2i 0.89 (1) 2.03 (1) 2.926 (3) 177 (4)

Symmetry code: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2152).

References

  1. Britton, D. & Gleason, W. B. (1991). Acta Cryst. C47, 2127–2131.
  2. Britton, D. & Young, V. G. Jr (2003). Acta Cryst. E59, o1849–o1851.
  3. Brock, C. P. (1980). Acta Cryst. B36, 968–971.
  4. Brock, C. P. & Haller, K. L. (1980). J. Phys. Chem. 88, 3570–3574.
  5. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. http://www.povray.org.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Frisch, M. J., et al. (2003). GAUSSIAN03 Gaussian Inc., Pittsburgh, Pennsylvania, USA.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Mohamed, A. K., Auner, N. & Bolte, M. (2003). Acta Cryst. E59, o476–o477.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003716/zq2152sup1.cif

e-68-0o580-sup1.cif (31.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003716/zq2152Isup2.hkl

e-68-0o580-Isup2.hkl (225KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003716/zq2152Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES