Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 4;68(Pt 3):o584. doi: 10.1107/S1600536812002656

3-(4-Bromo­phenyl­sulfin­yl)-2,5-dimethyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3297310  PMID: 22412500

Abstract

In the title compound, C16H13BrO2S, the 4-bromo­phenyl ring makes a dihedral angle of 87.87 (6)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by a weak π–π inter­action between the 4-bromo­phenyl rings [centroid-to-centroid distance = 3.907 (3) Å, inter­planar distance = 3.528 (3) Å and slippage = 1.679 (3) Å].

Related literature  

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2010a ,b ).graphic file with name e-68-0o584-scheme1.jpg

Experimental  

Crystal data  

  • C16H13BrO2S

  • M r = 349.23

  • Triclinic, Inline graphic

  • a = 6.4145 (3) Å

  • b = 10.0266 (5) Å

  • c = 11.7639 (6) Å

  • α = 101.606 (3)°

  • β = 92.240 (2)°

  • γ = 103.932 (2)°

  • V = 716.28 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.01 mm−1

  • T = 173 K

  • 0.30 × 0.23 × 0.20 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.518, T max = 0.746

  • 12848 measured reflections

  • 3507 independent reflections

  • 3048 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.087

  • S = 1.04

  • 3507 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002656/kp2381sup1.cif

e-68-0o584-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002656/kp2381Isup2.hkl

e-68-0o584-Isup2.hkl (172KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812002656/kp2381Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Blue-Bio Industry Regional Innovation Centre (grant No. RIC08-06-07) at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan city.

supplementary crystallographic information

Comment

Many compounds involving a benzofuran ring have drawn much attention owing to their valuable biological properties such as antibacterial, antifungal, antitumor, and antiviral activities (Aslam et al., 2009; Galal et al., 2009; Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing study of 2,5-dimethyl-1-benzofuran derivatives containing either 3-(4-fluorophenylsulfinyl) (Choi et al., 2010a) or 3-(4-chlorophenylsufinyl) (Choi et al., 2010b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is planar with the mean deviation of 0.006 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-bromophenyl ring and the mean plane of the benzofuran fragment is 87.87 (6)°. The crystal packing (Fig. 2) is further stabilised by a weak π–π interaction between the 4-bromophenyl rings of adjacent molecules, with a Cg···Cgi distance of 3.907 (3) Å and an interplanar distance of 3.528 (3) Å resulting in a slippage of 1.679 (3) Å (Cg is the centroid of the C11–C16 4-bromophenyl ring).

Experimental

3-Chloroperoxybenzoic acid 77% (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 3-(4-bromophenylsulfanyl)-2,5-dimethyl-1-benzofuran (366 mg, 1.1 mmol) in dichloromethane (40 ml) at 273 K. After being stirred at room temperature for 5 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colourless solid [yield 72%, m.p. 434–435 K; Rf = 0.49 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C)for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the π–π interactions (dotted lines) in the crystal structure of the title compound. All H atoms were omitted for clarity. [Symmetry codes: (i) -x + 2, -y + 1, -z + 2].

Crystal data

C16H13BrO2S Z = 2
Mr = 349.23 F(000) = 352
Triclinic, P1 Dx = 1.619 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.4145 (3) Å Cell parameters from 7068 reflections
b = 10.0266 (5) Å θ = 2.5–28.2°
c = 11.7639 (6) Å µ = 3.01 mm1
α = 101.606 (3)° T = 173 K
β = 92.240 (2)° Block, colourless
γ = 103.932 (2)° 0.30 × 0.23 × 0.20 mm
V = 716.28 (6) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3507 independent reflections
Radiation source: rotating anode 3048 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.044
Detector resolution: 10.0 pixels mm-1 θmax = 28.3°, θmin = 1.8°
φ and ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −13→13
Tmin = 0.518, Tmax = 0.746 l = −15→15
12848 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: difference Fourier map
wR(F2) = 0.087 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3244P] where P = (Fo2 + 2Fc2)/3
3507 reflections (Δ/σ)max = 0.001
183 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.23629 (4) 0.91785 (2) 0.915580 (19) 0.04170 (10)
S1 0.69071 (9) 0.27380 (6) 0.84528 (4) 0.03194 (13)
O1 0.8013 (2) 0.10195 (16) 0.53135 (13) 0.0336 (3)
O2 0.4646 (3) 0.2757 (2) 0.86938 (15) 0.0462 (4)
C1 0.6970 (3) 0.2139 (2) 0.69530 (17) 0.0274 (4)
C2 0.5786 (3) 0.2405 (2) 0.59942 (17) 0.0265 (4)
C3 0.4234 (4) 0.3139 (2) 0.5861 (2) 0.0332 (5)
H3 0.3725 0.3633 0.6524 0.040*
C4 0.3442 (4) 0.3134 (3) 0.4742 (2) 0.0396 (5)
C5 0.4239 (4) 0.2411 (3) 0.3781 (2) 0.0453 (6)
H5 0.3709 0.2433 0.3022 0.054*
C6 0.5762 (4) 0.1665 (3) 0.3889 (2) 0.0410 (5)
H6 0.6276 0.1169 0.3229 0.049*
C7 0.6492 (3) 0.1686 (2) 0.50126 (18) 0.0303 (4)
C8 0.8253 (3) 0.1306 (2) 0.65040 (18) 0.0298 (4)
C9 0.1740 (4) 0.3903 (3) 0.4573 (3) 0.0570 (8)
H9A 0.0339 0.3220 0.4338 0.086*
H9B 0.2114 0.4437 0.3966 0.086*
H9C 0.1660 0.4550 0.5305 0.086*
C10 0.9846 (4) 0.0710 (3) 0.7040 (2) 0.0406 (5)
H10A 1.1308 0.1223 0.6938 0.061*
H10B 0.9612 −0.0286 0.6664 0.061*
H10C 0.9671 0.0797 0.7874 0.061*
C11 0.8359 (3) 0.4538 (2) 0.85581 (16) 0.0277 (4)
C12 0.7417 (4) 0.5610 (2) 0.89976 (19) 0.0334 (5)
H12 0.5963 0.5394 0.9183 0.040*
C13 0.8589 (4) 0.7004 (2) 0.91705 (19) 0.0354 (5)
H13 0.7951 0.7747 0.9475 0.042*
C14 1.0693 (4) 0.7290 (2) 0.88928 (17) 0.0304 (4)
C15 1.1664 (4) 0.6220 (2) 0.84572 (19) 0.0344 (5)
H15 1.3117 0.6438 0.8269 0.041*
C16 1.0498 (4) 0.4837 (2) 0.83008 (19) 0.0342 (5)
H16 1.1152 0.4094 0.8019 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.05053 (18) 0.03378 (14) 0.03637 (14) 0.00588 (11) 0.00285 (10) 0.00355 (9)
S1 0.0324 (3) 0.0376 (3) 0.0233 (2) 0.0047 (2) 0.0038 (2) 0.0056 (2)
O1 0.0309 (8) 0.0348 (8) 0.0329 (8) 0.0088 (7) 0.0073 (6) 0.0011 (6)
O2 0.0323 (9) 0.0570 (11) 0.0400 (9) −0.0004 (8) 0.0154 (7) 0.0009 (8)
C1 0.0257 (10) 0.0285 (10) 0.0262 (9) 0.0053 (8) 0.0017 (8) 0.0039 (8)
C2 0.0227 (10) 0.0271 (10) 0.0267 (9) 0.0010 (8) 0.0024 (7) 0.0051 (8)
C3 0.0261 (11) 0.0345 (11) 0.0393 (12) 0.0057 (9) 0.0036 (9) 0.0107 (9)
C4 0.0250 (11) 0.0403 (12) 0.0530 (14) −0.0023 (9) −0.0041 (10) 0.0235 (11)
C5 0.0367 (13) 0.0582 (16) 0.0352 (12) −0.0070 (11) −0.0066 (10) 0.0214 (11)
C6 0.0392 (13) 0.0504 (14) 0.0256 (10) −0.0011 (11) 0.0024 (9) 0.0056 (9)
C7 0.0263 (11) 0.0316 (10) 0.0284 (10) 0.0005 (8) 0.0028 (8) 0.0042 (8)
C8 0.0266 (11) 0.0262 (10) 0.0334 (10) 0.0036 (8) 0.0022 (8) 0.0032 (8)
C9 0.0308 (14) 0.0602 (17) 0.086 (2) 0.0058 (12) −0.0083 (13) 0.0402 (16)
C10 0.0327 (13) 0.0368 (12) 0.0536 (14) 0.0123 (10) 0.0005 (11) 0.0092 (10)
C11 0.0273 (10) 0.0342 (10) 0.0201 (9) 0.0073 (8) 0.0007 (7) 0.0029 (7)
C12 0.0263 (11) 0.0439 (12) 0.0320 (11) 0.0135 (9) 0.0066 (8) 0.0065 (9)
C13 0.0388 (13) 0.0388 (12) 0.0316 (10) 0.0182 (10) 0.0056 (9) 0.0038 (9)
C14 0.0350 (12) 0.0308 (10) 0.0224 (9) 0.0061 (9) −0.0023 (8) 0.0026 (8)
C15 0.0263 (11) 0.0395 (12) 0.0358 (11) 0.0090 (9) 0.0052 (9) 0.0035 (9)
C16 0.0303 (11) 0.0372 (12) 0.0344 (11) 0.0117 (9) 0.0079 (9) 0.0011 (9)

Geometric parameters (Å, º)

Br1—C14 1.895 (2) C8—C10 1.482 (3)
S1—O2 1.4927 (18) C9—H9A 0.9800
S1—C1 1.751 (2) C9—H9B 0.9800
S1—C11 1.798 (2) C9—H9C 0.9800
O1—C8 1.367 (3) C10—H10A 0.9800
O1—C7 1.381 (3) C10—H10B 0.9800
C1—C8 1.357 (3) C10—H10C 0.9800
C1—C2 1.439 (3) C11—C12 1.379 (3)
C2—C7 1.386 (3) C11—C16 1.391 (3)
C2—C3 1.395 (3) C12—C13 1.388 (3)
C3—C4 1.391 (3) C12—H12 0.9500
C3—H3 0.9500 C13—C14 1.377 (3)
C4—C5 1.399 (4) C13—H13 0.9500
C4—C9 1.508 (3) C14—C15 1.389 (3)
C5—C6 1.382 (4) C15—C16 1.379 (3)
C5—H5 0.9500 C15—H15 0.9500
C6—C7 1.380 (3) C16—H16 0.9500
C6—H6 0.9500
O2—S1—C1 108.74 (10) C4—C9—H9B 109.5
O2—S1—C11 106.52 (10) H9A—C9—H9B 109.5
C1—S1—C11 97.81 (10) C4—C9—H9C 109.5
C8—O1—C7 106.09 (16) H9A—C9—H9C 109.5
C8—C1—C2 107.82 (18) H9B—C9—H9C 109.5
C8—C1—S1 122.92 (16) C8—C10—H10A 109.5
C2—C1—S1 129.26 (16) C8—C10—H10B 109.5
C7—C2—C3 119.4 (2) H10A—C10—H10B 109.5
C7—C2—C1 104.22 (18) C8—C10—H10C 109.5
C3—C2—C1 136.4 (2) H10A—C10—H10C 109.5
C4—C3—C2 118.9 (2) H10B—C10—H10C 109.5
C4—C3—H3 120.6 C12—C11—C16 120.6 (2)
C2—C3—H3 120.6 C12—C11—S1 119.81 (17)
C3—C4—C5 119.4 (2) C16—C11—S1 119.33 (16)
C3—C4—C9 120.0 (3) C11—C12—C13 120.2 (2)
C5—C4—C9 120.6 (2) C11—C12—H12 119.9
C6—C5—C4 122.9 (2) C13—C12—H12 119.9
C6—C5—H5 118.5 C14—C13—C12 118.8 (2)
C4—C5—H5 118.5 C14—C13—H13 120.6
C7—C6—C5 115.9 (2) C12—C13—H13 120.6
C7—C6—H6 122.0 C13—C14—C15 121.5 (2)
C5—C6—H6 122.0 C13—C14—Br1 119.97 (16)
C6—C7—O1 125.3 (2) C15—C14—Br1 118.46 (17)
C6—C7—C2 123.5 (2) C16—C15—C14 119.3 (2)
O1—C7—C2 111.16 (18) C16—C15—H15 120.3
C1—C8—O1 110.71 (18) C14—C15—H15 120.3
C1—C8—C10 133.1 (2) C15—C16—C11 119.6 (2)
O1—C8—C10 116.15 (19) C15—C16—H16 120.2
C4—C9—H9A 109.5 C11—C16—H16 120.2
O2—S1—C1—C8 −143.25 (19) C1—C2—C7—O1 −0.3 (2)
C11—S1—C1—C8 106.29 (19) C2—C1—C8—O1 0.8 (2)
O2—S1—C1—C2 37.3 (2) S1—C1—C8—O1 −178.83 (14)
C11—S1—C1—C2 −73.2 (2) C2—C1—C8—C10 178.7 (2)
C8—C1—C2—C7 −0.3 (2) S1—C1—C8—C10 −0.9 (4)
S1—C1—C2—C7 179.30 (17) C7—O1—C8—C1 −1.0 (2)
C8—C1—C2—C3 178.9 (2) C7—O1—C8—C10 −179.27 (19)
S1—C1—C2—C3 −1.5 (4) O2—S1—C11—C12 10.2 (2)
C7—C2—C3—C4 −0.3 (3) C1—S1—C11—C12 122.51 (17)
C1—C2—C3—C4 −179.4 (2) O2—S1—C11—C16 −175.97 (17)
C2—C3—C4—C5 −0.8 (3) C1—S1—C11—C16 −63.70 (18)
C2—C3—C4—C9 179.1 (2) C16—C11—C12—C13 1.1 (3)
C3—C4—C5—C6 1.4 (4) S1—C11—C12—C13 174.76 (16)
C9—C4—C5—C6 −178.5 (2) C11—C12—C13—C14 0.2 (3)
C4—C5—C6—C7 −0.8 (4) C12—C13—C14—C15 −0.6 (3)
C5—C6—C7—O1 −179.6 (2) C12—C13—C14—Br1 −178.34 (16)
C5—C6—C7—C2 −0.4 (4) C13—C14—C15—C16 −0.1 (3)
C8—O1—C7—C6 −179.9 (2) Br1—C14—C15—C16 177.61 (17)
C8—O1—C7—C2 0.8 (2) C14—C15—C16—C11 1.3 (3)
C3—C2—C7—C6 0.9 (3) C12—C11—C16—C15 −1.8 (3)
C1—C2—C7—C6 −179.7 (2) S1—C11—C16—C15 −175.56 (17)
C3—C2—C7—O1 −179.69 (18)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2381).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o543. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428. [DOI] [PubMed]
  9. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002656/kp2381sup1.cif

e-68-0o584-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002656/kp2381Isup2.hkl

e-68-0o584-Isup2.hkl (172KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812002656/kp2381Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES