Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 4;68(Pt 3):o589–o590. doi: 10.1107/S1600536812003662

9α-Hy­droxy-12-{[4-(4-meth­oxy­phen­yl)piperazin-1-yl]meth­yl}-4,8-dimethyl-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one

Mohamed Moumou a, Ahmed Benharref a, Jean-Claude Daran b, Fouad Mellouki c,*, Moha Berraho a
PMCID: PMC3297315  PMID: 22412505

Abstract

The title compound, C26H36N2O5, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), wich was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from fused five- and ten-membered rings with the meth­oxy­phenyl­piperazine group as a substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the piperazine ring displays a chair conformation and the five-membered ring a flattened envelope conformation; the C(H)—C—C(H) atoms representing the flap lie out of the mean plane through the remaining four atoms by 0.343 (3) Å. The dihedral angle between the mean planes of the ten-membered ring and the lactone ring is 18.12 (14)°. An intra­molecular O—H⋯N hydrogen bond occurs. The crystal structure features weak C—H⋯O inter­actions.

Related literature  

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); Qureshi et al. (1990). For ring-puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-0o589-scheme1.jpg

Experimental  

Crystal data  

  • C26H36N2O5

  • M r = 456.57

  • Orthorhombic, Inline graphic

  • a = 6.7066 (7) Å

  • b = 11.9033 (11) Å

  • c = 30.322 (4) Å

  • V = 2420.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.33 × 0.17 × 0.04 mm

Data collection  

  • Agilent Xcalibur Sapphire1 (long nozzle) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.732, T max = 1.000

  • 14543 measured reflections

  • 4925 independent reflections

  • 3663 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.130

  • S = 1.04

  • 4925 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997)and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003662/ds2172sup1.cif

e-68-0o589-sup1.cif (32.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003662/ds2172Isup2.hkl

e-68-0o589-Isup2.hkl (236.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003662/ds2172Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1 0.84 2.14 2.977 (4) 170
C2—H2⋯O12i 1.00 2.42 3.225 (4) 137
C5—H5B⋯O3ii 0.99 2.45 3.310 (4) 145
C7—H7⋯O14iii 0.95 2.50 3.198 (4) 130
C15—H15A⋯O12i 0.99 2.57 3.413 (4) 143
C15—H15A⋯O14i 0.99 2.50 3.469 (4) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Professor El Ammari for discussions on the refinement of the structure.

supplementary crystallographic information

Comment

Our work lies within the framework of the valorization of medicinals plants and concerning the Anvillea radiata wich is a plant that grows in northern Africa and particularly found in the two Maghreb countries, Morocco and Algeria. This plant is used in traditional local medicine for the treatment of dysentery, gastric-intestinal disorders (Bellakhdar, 1997), hypoglycemic activity (Qureshi et al., 1990), and has been reported to have antitumoral activity (Abdel Sattar et al., 1996). In our study of different Moroccan endemic plants, we have demonstrated that the aerial parts of Anvillea radiata could be used as a renewable source of 9-hydroxyparthenolide (El Hassany et al., 2004). In order to prepare products with high added value that can be used in pharmacology and cosmetics industry, we studied the chemical reactivity of this major constituent of Anvillea radiata. Thus, treatment of this sesquiterpene lactone by an equivalent amount of 1-(4-methoxyphenylpiperazine) in ethanol led to the title compound with a yield of 78%. The crystal structure of (I) is reported herein. The molecule contains a fused ring system and methoxyphenylpiperazine group as a substituent to a lactone ring. The molecular structure of (I), Fig. 1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.216 (3) Å and φ = 69.7 (8)°. The atom C11 deviate from the mean plane through other four atoms in the ring by 0.343 (2) Å. The ten-membered ring displays an approximate chair–chair conformation, while the piperazine ring has a perfect chair conformation with QT = 0.557 (3) Å, θ = 3.4 (3)° and φ2 = 33 (6)°. In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into chains along the b axis (Table 1, Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.

Experimental

The mixture of 9α-hydroxyparthenolide (1 g, (3.78 mmol) and one equivalent of 1-(4-methoxyphenylpipirazine) in EtOH (30 ml) was stirred for one night at room temperature. The next day the reaction was stopped by adding water (20 ml) and extracted three times with ethyl acetate (3 × 30 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 1.34 g (2.94 mmol) of the title compound, which was recrystallized in ethyl acetate.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view showing the C—H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C26H36N2O5 F(000) = 984
Mr = 456.57 Dx = 1.253 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 14543 reflections
a = 6.7066 (7) Å θ = 3.1–26.4°
b = 11.9033 (11) Å µ = 0.09 mm1
c = 30.322 (4) Å T = 180 K
V = 2420.6 (4) Å3 Platelet, colourless
Z = 4 0.33 × 0.17 × 0.04 mm

Data collection

Agilent Xcalibur Sapphire1 (long nozzle) diffractometer 4925 independent reflections
Radiation source: fine-focus sealed tube 3663 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
Detector resolution: 8.2632 pixels mm-1 θmax = 26.4°, θmin = 3.1°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −14→14
Tmin = 0.732, Tmax = 1.000 l = −37→37
14543 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0567P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4925 reflections Δρmax = 0.25 e Å3
303 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0073 (12)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies)
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4429 (4) 0.9320 (2) 0.06430 (8) 0.0236 (6)
H1 0.5156 0.9747 0.0877 0.028*
C2 0.3207 (4) 1.0088 (2) 0.03673 (9) 0.0276 (6)
H2 0.2198 0.9692 0.0181 0.033*
C4 0.2646 (4) 1.1235 (2) 0.04810 (10) 0.0328 (7)
C5 0.0642 (5) 1.1608 (2) 0.03175 (11) 0.0440 (8)
H5A 0.0334 1.1215 0.0038 0.053*
H5B 0.0681 1.2425 0.0256 0.053*
C6 −0.1006 (5) 1.1365 (3) 0.06533 (12) 0.0500 (9)
H6A −0.0928 1.1917 0.0897 0.060*
H6B −0.2323 1.1447 0.0510 0.060*
C7 −0.0803 (4) 1.0198 (2) 0.08363 (11) 0.0377 (7)
H7 −0.1012 0.9598 0.0635 0.045*
C8 −0.0368 (5) 0.9912 (3) 0.12466 (10) 0.0396 (8)
C9 0.0201 (4) 0.8728 (3) 0.13688 (10) 0.0382 (7)
H9 −0.0145 0.8614 0.1686 0.046*
C10 0.2457 (4) 0.8572 (2) 0.13205 (9) 0.0306 (6)
H10A 0.2871 0.7920 0.1502 0.037*
H10B 0.3133 0.9245 0.1440 0.037*
C11 0.3171 (4) 0.8384 (2) 0.08456 (8) 0.0227 (6)
H11 0.1959 0.8291 0.0657 0.027*
C12 0.4457 (4) 0.7345 (2) 0.07835 (8) 0.0243 (6)
H12 0.5218 0.7194 0.1061 0.029*
C13 0.5872 (4) 0.7650 (2) 0.04265 (9) 0.0266 (6)
C15 0.3307 (4) 0.6301 (2) 0.06537 (9) 0.0288 (6)
H15A 0.2635 0.6437 0.0368 0.035*
H15B 0.4256 0.5673 0.0612 0.035*
C16 0.2748 (4) 0.5460 (2) 0.13653 (9) 0.0309 (7)
H16A 0.3659 0.6011 0.1504 0.037*
H16B 0.3552 0.4806 0.1271 0.037*
C17 0.1246 (4) 0.5089 (3) 0.16934 (9) 0.0358 (7)
H17A 0.1933 0.4746 0.1949 0.043*
H17B 0.0488 0.5749 0.1800 0.043*
C18 −0.1058 (4) 0.4730 (2) 0.11077 (9) 0.0327 (7)
H18A −0.1952 0.5357 0.1190 0.039*
H18B −0.1878 0.4138 0.0967 0.039*
C19 0.0472 (4) 0.5141 (2) 0.07857 (9) 0.0328 (7)
H19A 0.1264 0.4495 0.0678 0.039*
H19B −0.0213 0.5480 0.0529 0.039*
C20 −0.1351 (4) 0.3686 (2) 0.18020 (9) 0.0271 (6)
C21 −0.0596 (5) 0.3360 (2) 0.22117 (9) 0.0383 (7)
H21 0.0699 0.3598 0.2297 0.046*
C22 −0.1693 (5) 0.2703 (3) 0.24923 (10) 0.0429 (8)
H22 −0.1147 0.2493 0.2769 0.051*
C23 −0.3549 (5) 0.2348 (3) 0.23802 (10) 0.0413 (8)
C24 −0.4336 (5) 0.2676 (3) 0.19821 (11) 0.0467 (8)
H24 −0.5644 0.2447 0.1902 0.056*
C25 −0.3234 (4) 0.3338 (3) 0.16971 (10) 0.0387 (7)
H25 −0.3798 0.3555 0.1423 0.046*
C26 0.3438 (5) 1.1828 (3) 0.08780 (12) 0.0526 (10)
H26A 0.4715 1.1494 0.0964 0.079*
H26B 0.2485 1.1756 0.1121 0.079*
H26C 0.3634 1.2625 0.0809 0.079*
C27 −0.0231 (7) 1.0695 (3) 0.16314 (13) 0.0744 (13)
H27A −0.0360 1.1472 0.1528 0.112*
H27B 0.1062 1.0598 0.1777 0.112*
H27C −0.1304 1.0527 0.1841 0.112*
C28 −0.6231 (7) 0.1128 (6) 0.2554 (2) 0.134 (3)
H28A −0.7310 0.1678 0.2527 0.201*
H28B −0.6591 0.0564 0.2776 0.201*
H28C −0.6019 0.0758 0.2269 0.201*
N1 0.1814 (3) 0.59719 (17) 0.09797 (7) 0.0254 (5)
N2 −0.0123 (3) 0.42794 (18) 0.15021 (7) 0.0286 (5)
O3 0.4135 (3) 1.10270 (15) 0.01501 (7) 0.0388 (5)
O4 −0.0873 (3) 0.79295 (17) 0.11206 (8) 0.0440 (6)
H4 −0.0112 0.7400 0.1049 0.066*
O5 −0.4482 (4) 0.1672 (2) 0.26829 (8) 0.0655 (8)
O12 0.6957 (3) 0.70592 (16) 0.02200 (7) 0.0392 (5)
O14 0.5817 (3) 0.87658 (14) 0.03489 (6) 0.0277 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0273 (14) 0.0170 (13) 0.0264 (13) 0.0045 (11) 0.0020 (12) −0.0043 (11)
C2 0.0301 (14) 0.0167 (12) 0.0360 (15) −0.0029 (12) −0.0034 (13) 0.0024 (13)
C4 0.0362 (15) 0.0138 (13) 0.0484 (18) 0.0002 (12) −0.0031 (14) −0.0001 (13)
C5 0.0467 (18) 0.0231 (15) 0.062 (2) 0.0085 (14) −0.0062 (17) 0.0091 (15)
C6 0.0412 (18) 0.0364 (18) 0.072 (2) 0.0170 (16) −0.0093 (18) 0.0051 (18)
C7 0.0255 (14) 0.0313 (16) 0.056 (2) 0.0021 (14) −0.0035 (15) −0.0011 (15)
C8 0.0371 (17) 0.0342 (17) 0.0476 (19) 0.0160 (15) 0.0053 (15) −0.0058 (15)
C9 0.0415 (17) 0.0354 (16) 0.0377 (16) 0.0084 (14) 0.0085 (15) −0.0036 (15)
C10 0.0373 (15) 0.0254 (15) 0.0292 (15) 0.0072 (13) 0.0056 (13) 0.0000 (13)
C11 0.0273 (13) 0.0154 (12) 0.0254 (13) 0.0033 (11) −0.0001 (11) −0.0005 (11)
C12 0.0321 (14) 0.0164 (13) 0.0243 (13) 0.0055 (11) 0.0037 (12) −0.0002 (11)
C13 0.0318 (14) 0.0178 (13) 0.0301 (15) 0.0059 (12) 0.0005 (13) −0.0005 (12)
C15 0.0411 (15) 0.0178 (13) 0.0275 (14) 0.0053 (13) 0.0049 (13) 0.0000 (12)
C16 0.0339 (16) 0.0270 (15) 0.0319 (15) −0.0020 (12) −0.0040 (13) 0.0092 (13)
C17 0.0423 (17) 0.0355 (16) 0.0294 (15) −0.0113 (14) −0.0069 (14) 0.0075 (13)
C18 0.0419 (17) 0.0257 (14) 0.0304 (15) −0.0056 (13) −0.0096 (14) 0.0057 (12)
C19 0.0479 (17) 0.0237 (14) 0.0269 (14) −0.0051 (14) −0.0052 (14) 0.0025 (12)
C20 0.0375 (15) 0.0154 (12) 0.0283 (14) 0.0028 (11) −0.0006 (12) −0.0014 (11)
C21 0.0473 (18) 0.0352 (17) 0.0325 (15) −0.0144 (15) −0.0045 (15) 0.0053 (14)
C22 0.059 (2) 0.0404 (18) 0.0295 (15) −0.0120 (17) −0.0055 (16) 0.0058 (15)
C23 0.0438 (18) 0.0407 (18) 0.0395 (18) −0.0049 (15) 0.0043 (15) 0.0094 (15)
C24 0.0338 (16) 0.048 (2) 0.058 (2) −0.0046 (16) −0.0044 (16) 0.0198 (17)
C25 0.0367 (16) 0.0369 (17) 0.0425 (17) 0.0059 (15) −0.0034 (14) 0.0138 (15)
C26 0.056 (2) 0.0249 (16) 0.077 (3) 0.0041 (16) −0.0127 (19) −0.0184 (17)
C27 0.103 (3) 0.056 (2) 0.064 (2) 0.039 (2) −0.001 (2) −0.022 (2)
C28 0.076 (3) 0.183 (6) 0.143 (5) −0.071 (4) −0.035 (3) 0.119 (5)
N1 0.0358 (13) 0.0180 (11) 0.0223 (11) −0.0021 (10) −0.0044 (10) 0.0038 (9)
N2 0.0372 (13) 0.0231 (11) 0.0255 (12) −0.0044 (10) −0.0039 (11) 0.0039 (10)
O3 0.0443 (11) 0.0162 (9) 0.0558 (13) −0.0018 (9) 0.0035 (11) 0.0104 (9)
O4 0.0342 (12) 0.0337 (12) 0.0640 (14) −0.0016 (10) 0.0071 (11) 0.0012 (11)
O5 0.0575 (15) 0.0798 (19) 0.0593 (15) −0.0293 (15) −0.0015 (13) 0.0339 (15)
O12 0.0498 (13) 0.0286 (10) 0.0390 (12) 0.0102 (10) 0.0163 (10) −0.0017 (9)
O14 0.0314 (10) 0.0177 (9) 0.0341 (10) 0.0027 (8) 0.0081 (9) 0.0003 (8)

Geometric parameters (Å, º)

C1—O14 1.448 (3) C16—C17 1.483 (4)
C1—C2 1.485 (4) C16—H16A 0.9900
C1—C11 1.526 (3) C16—H16B 0.9900
C1—H1 1.0000 C17—N2 1.452 (3)
C2—O3 1.439 (3) C17—H17A 0.9900
C2—C4 1.457 (4) C17—H17B 0.9900
C2—H2 1.0000 C18—N2 1.453 (3)
C4—O3 1.437 (4) C18—C19 1.499 (4)
C4—C26 1.494 (4) C18—H18A 0.9900
C4—C5 1.500 (4) C18—H18B 0.9900
C5—C6 1.530 (4) C19—N1 1.460 (3)
C5—H5A 0.9900 C19—H19A 0.9900
C5—H5B 0.9900 C19—H19B 0.9900
C6—C7 1.502 (4) C20—C25 1.367 (4)
C6—H6A 0.9900 C20—C21 1.396 (4)
C6—H6B 0.9900 C20—N2 1.416 (3)
C7—C8 1.323 (4) C21—C22 1.370 (4)
C7—H7 0.9500 C21—H21 0.9500
C8—C27 1.496 (5) C22—C23 1.358 (4)
C8—C9 1.507 (4) C22—H22 0.9500
C9—O4 1.410 (4) C23—O5 1.371 (4)
C9—C10 1.532 (4) C23—C24 1.374 (4)
C9—H9 1.0000 C24—C25 1.384 (4)
C10—C11 1.534 (4) C24—H24 0.9500
C10—H10A 0.9900 C25—H25 0.9500
C10—H10B 0.9900 C26—H26A 0.9800
C11—C12 1.520 (3) C26—H26B 0.9800
C11—H11 1.0000 C26—H26C 0.9800
C12—C13 1.484 (4) C27—H27A 0.9800
C12—C15 1.515 (4) C27—H27B 0.9800
C12—H12 1.0000 C27—H27C 0.9800
C13—O12 1.190 (3) C28—O5 1.396 (5)
C13—O14 1.350 (3) C28—H28A 0.9800
C15—N1 1.460 (3) C28—H28B 0.9800
C15—H15A 0.9900 C28—H28C 0.9800
C15—H15B 0.9900 O4—H4 0.8400
C16—N1 1.460 (3)
O14—C1—C2 106.8 (2) N1—C16—H16A 109.3
O14—C1—C11 105.74 (18) C17—C16—H16A 109.3
C2—C1—C11 111.8 (2) N1—C16—H16B 109.3
O14—C1—H1 110.8 C17—C16—H16B 109.3
C2—C1—H1 110.8 H16A—C16—H16B 107.9
C11—C1—H1 110.8 N2—C17—C16 111.0 (2)
O3—C2—C4 59.49 (17) N2—C17—H17A 109.4
O3—C2—C1 119.8 (2) C16—C17—H17A 109.4
C4—C2—C1 125.9 (2) N2—C17—H17B 109.4
O3—C2—H2 113.6 C16—C17—H17B 109.4
C4—C2—H2 113.6 H17A—C17—H17B 108.0
C1—C2—H2 113.6 N2—C18—C19 111.2 (2)
O3—C4—C2 59.63 (17) N2—C18—H18A 109.4
O3—C4—C26 113.4 (3) C19—C18—H18A 109.4
C2—C4—C26 122.8 (3) N2—C18—H18B 109.4
O3—C4—C5 116.3 (2) C19—C18—H18B 109.4
C2—C4—C5 115.5 (3) H18A—C18—H18B 108.0
C26—C4—C5 116.4 (3) N1—C19—C18 112.4 (2)
C4—C5—C6 111.8 (3) N1—C19—H19A 109.1
C4—C5—H5A 109.3 C18—C19—H19A 109.1
C6—C5—H5A 109.3 N1—C19—H19B 109.1
C4—C5—H5B 109.3 C18—C19—H19B 109.1
C6—C5—H5B 109.3 H19A—C19—H19B 107.9
H5A—C5—H5B 107.9 C25—C20—C21 117.2 (3)
C7—C6—C5 110.8 (3) C25—C20—N2 122.6 (2)
C7—C6—H6A 109.5 C21—C20—N2 119.9 (2)
C5—C6—H6A 109.5 C22—C21—C20 121.1 (3)
C7—C6—H6B 109.5 C22—C21—H21 119.5
C5—C6—H6B 109.5 C20—C21—H21 119.5
H6A—C6—H6B 108.1 C23—C22—C21 121.0 (3)
C8—C7—C6 127.2 (3) C23—C22—H22 119.5
C8—C7—H7 116.4 C21—C22—H22 119.5
C6—C7—H7 116.4 C22—C23—O5 115.7 (3)
C7—C8—C27 126.0 (3) C22—C23—C24 118.9 (3)
C7—C8—C9 121.9 (3) O5—C23—C24 125.4 (3)
C27—C8—C9 112.0 (3) C23—C24—C25 120.3 (3)
O4—C9—C8 111.7 (3) C23—C24—H24 119.8
O4—C9—C10 111.8 (2) C25—C24—H24 119.8
C8—C9—C10 109.9 (3) C20—C25—C24 121.4 (3)
O4—C9—H9 107.7 C20—C25—H25 119.3
C8—C9—H9 107.7 C24—C25—H25 119.3
C10—C9—H9 107.7 C4—C26—H26A 109.5
C9—C10—C11 114.6 (2) C4—C26—H26B 109.5
C9—C10—H10A 108.6 H26A—C26—H26B 109.5
C11—C10—H10A 108.6 C4—C26—H26C 109.5
C9—C10—H10B 108.6 H26A—C26—H26C 109.5
C11—C10—H10B 108.6 H26B—C26—H26C 109.5
H10A—C10—H10B 107.6 C8—C27—H27A 109.5
C12—C11—C1 103.3 (2) C8—C27—H27B 109.5
C12—C11—C10 114.3 (2) H27A—C27—H27B 109.5
C1—C11—C10 116.4 (2) C8—C27—H27C 109.5
C12—C11—H11 107.5 H27A—C27—H27C 109.5
C1—C11—H11 107.5 H27B—C27—H27C 109.5
C10—C11—H11 107.5 O5—C28—H28A 109.5
C13—C12—C15 109.7 (2) O5—C28—H28B 109.5
C13—C12—C11 104.7 (2) H28A—C28—H28B 109.5
C15—C12—C11 114.2 (2) O5—C28—H28C 109.5
C13—C12—H12 109.4 H28A—C28—H28C 109.5
C15—C12—H12 109.4 H28B—C28—H28C 109.5
C11—C12—H12 109.4 C16—N1—C15 111.1 (2)
O12—C13—O14 120.4 (2) C16—N1—C19 107.7 (2)
O12—C13—C12 129.1 (2) C15—N1—C19 109.4 (2)
O14—C13—C12 110.5 (2) C20—N2—C17 116.3 (2)
N1—C15—C12 113.2 (2) C20—N2—C18 117.5 (2)
N1—C15—H15A 108.9 C17—N2—C18 110.9 (2)
C12—C15—H15A 108.9 C4—O3—C2 60.88 (17)
N1—C15—H15B 108.9 C9—O4—H4 109.5
C12—C15—H15B 108.9 C23—O5—C28 117.9 (3)
H15A—C15—H15B 107.8 C13—O14—C1 111.0 (2)
N1—C16—C17 111.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···N1 0.84 2.14 2.977 (4) 170
C2—H2···O12i 1.00 2.42 3.225 (4) 137
C5—H5B···O3ii 0.99 2.45 3.310 (4) 145
C7—H7···O14iii 0.95 2.50 3.198 (4) 130
C15—H15A···O12i 0.99 2.57 3.413 (4) 143
C15—H15A···O14i 0.99 2.50 3.469 (4) 165

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x−1/2, −y+5/2, −z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2172).

References

  1. Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405. [DOI] [PubMed]
  2. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  3. Bellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle, pp. 272–274. Paris: Ibis Press.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003662/ds2172sup1.cif

e-68-0o589-sup1.cif (32.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003662/ds2172Isup2.hkl

e-68-0o589-Isup2.hkl (236.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003662/ds2172Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES