Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 4;68(Pt 3):o591. doi: 10.1107/S1600536812003728

Nilutamide

Niraj S Trasi a, Phillip E Fanwick b, Lynne S Taylor a,*
PMCID: PMC3297316  PMID: 22412506

Abstract

The crystal structure of nilutamide [systematic name: 5,5-dimethyl-3-[4-nitro-3-(trifluoro­meth­yl)phen­yl]imidazolidine-2,4-dione], C12H10F3N3O4, was determined at 150 K. The dihedral angle between the mean planes through the imidazoline [maximum deviation = 0.0396 (14) Å] and benzene rings is 51.49 (5)°. The mol­ecule exhibits inter­molecular hydrogen bonding via N—H⋯O inter­actions, resulting in the formation of chains parallel to the c axis.

Related literature  

For the structure of a related compound, see: Cense et al. (1994).graphic file with name e-68-0o591-scheme1.jpg

Experimental  

Crystal data  

  • C12H10F3N3O4

  • M r = 317.23

  • Monoclinic, Inline graphic

  • a = 12.3304 (9) Å

  • b = 9.8875 (2) Å

  • c = 12.2118 (3) Å

  • β = 117.322 (8)°

  • V = 1322.74 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.31 mm−1

  • T = 150 K

  • 0.20 × 0.12 × 0.05 mm

Data collection  

  • Rigaku Rapid II diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001) T min = 0.733, T max = 0.937

  • 13145 measured reflections

  • 2324 independent reflections

  • 2019 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.085

  • S = 1.12

  • 2324 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and a local program based on the method of Prince & Nicholson (1983); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and local programs.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812003728/rz2702sup1.cif

e-68-0o591-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003728/rz2702Isup2.hkl

e-68-0o591-Isup2.hkl (114.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003728/rz2702Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812003728/rz2702Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14⋯O12i 0.84 (2) 2.06 (2) 2.894 (2) 172.3 (15)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the National Science Foundation Engineering Research Center for Structured Organic Particulate Systems for financial support (NSF ERCSOPS; EEC-0540855).

supplementary crystallographic information

Comment

The title compound is a potent antiandrogen used primarily in the treatment of advanced stage prostrate cancer. While no single-crystal structure has been reported for this compound before, there have been reported structures for structurally related compounds like flutamide by Cense et al. (1994). However, the molecular arrangement of nilutamide is different from flutamide since flutamide does not exhibit any hydrogen bonding between the NH and the CO.

The imidazoline ring of the title compound (Fig. 1) is roughly planar [maximum deviation 0.0396 (14) Å for atom C15] and forms a dihedral angle of 51.49 (5)° with the benzene ring. The nitro group is tilted by 56.35 (7)° with respect to the benzene ring. In the crystal, molecules are linked by intermolecular N—H···O hydrogen interactions (Table 1) forming chains parallel to the c axis.

Experimental

Nilutamide powder was obtained from Sigma-Aldrich Company and used without further purification.A solution of the compound (20 mg ml-1) was prepared in acetonitrile in a 3 ml glass vial. The solution was allowed to evaporate slowly by sealing the vial with parafilm and making a few small holes in the parafilm using a fine needle.

Refinement

The imidazoline H atom was located in a difference Fourier map and refined freely [N–H = 0.841 (19) Å]. All other H atoms were positioned geometrically [C–H = 0.95–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl groups. Seven outliers (-2 0 2, -8 7 8, -8 2 13, -6 2 13, -9 1 14, -7 1 14, -6 1 14), were removed from the final refinement using a local program based on the method of Prince & Nicholson (1983).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound indicating the 50% probability displacement ellipsoids and the atomic numbering for the non-H atoms.

Crystal data

C12H10F3N3O4 F(000) = 648
Mr = 317.23 Dx = 1.593 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 13145 reflections
a = 12.3304 (9) Å θ = 4–66°
b = 9.8875 (2) Å µ = 1.31 mm1
c = 12.2118 (3) Å T = 150 K
β = 117.322 (8)° Needle, colorless
V = 1322.74 (14) Å3 0.20 × 0.12 × 0.05 mm
Z = 4

Data collection

Rigaku Rapid II diffractometer 2019 reflections with I > 2σ(I)
Confocal optics monochromator Rint = 0.028
ω scans θmax = 66.6°, θmin = 4.0°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2001) h = −14→14
Tmin = 0.733, Tmax = 0.937 k = −11→11
13145 measured reflections l = −13→14
2324 independent reflections

Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0389P)2 + 0.5381P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032 (Δ/σ)max < 0.001
wR(F2) = 0.085 Δρmax = 0.31 e Å3
S = 1.12 Δρmin = −0.22 e Å3
2324 reflections Extinction correction: SHELXL97 (Sheldrick 2008)
206 parameters Extinction coefficient: 0.72E-02
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Outlier data were removed using a local program based on the method of Prince and Nicholson.Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.23075 (8) 0.18106 (10) 0.90252 (9) 0.0335 (3)
F2 0.15392 (8) 0.06052 (10) 0.99582 (10) 0.0362 (3)
F3 0.26813 (8) 0.22939 (11) 1.08854 (9) 0.0414 (3)
O12 −0.39601 (9) 0.28832 (12) 0.72787 (9) 0.0254 (3)
O15 −0.12113 (9) 0.25489 (11) 1.13651 (9) 0.0236 (3)
O41 0.14267 (12) 0.47236 (14) 0.74335 (12) 0.0419 (3)
O42 0.26114 (10) 0.46290 (12) 0.94084 (12) 0.0350 (3)
N4 0.16293 (12) 0.44744 (13) 0.84896 (13) 0.0264 (3)
N11 −0.23339 (10) 0.27413 (13) 0.92377 (11) 0.0189 (3)
N14 −0.32753 (11) 0.20473 (13) 1.03076 (12) 0.0212 (3)
C1 −0.13395 (12) 0.31698 (15) 0.90267 (13) 0.0189 (3)
C2 −0.03031 (13) 0.23688 (15) 0.94671 (13) 0.0196 (3)
C3 0.06962 (13) 0.27696 (15) 0.93109 (13) 0.0199 (3)
C4 0.06014 (13) 0.39789 (15) 0.86842 (13) 0.0208 (3)
C5 −0.04267 (13) 0.47766 (16) 0.82365 (13) 0.0214 (3)
C6 −0.14103 (13) 0.43759 (15) 0.84249 (13) 0.0198 (3)
C12 −0.35389 (13) 0.26571 (15) 0.83743 (13) 0.0187 (3)
C13 −0.42547 (13) 0.22238 (15) 0.90554 (13) 0.0197 (3)
C15 −0.21768 (13) 0.24400 (14) 1.04444 (13) 0.0187 (3)
C31 0.18088 (13) 0.18783 (16) 0.98009 (15) 0.0261 (4)
C131 −0.51338 (13) 0.33459 (17) 0.89947 (15) 0.0259 (4)
C132 −0.49281 (15) 0.08983 (17) 0.85113 (15) 0.0289 (4)
H2 −0.0276 0.1543 0.9877 0.023*
H5 −0.0465 0.5589 0.7805 0.026*
H6 −0.2121 0.4924 0.8144 0.024*
H14 −0.3407 (15) 0.2040 (18) 1.0925 (17) 0.025 (5)*
H13A −0.5518 0.3103 0.9514 0.039*
H13B −0.5765 0.3459 0.8141 0.039*
H13C −0.4682 0.4195 0.9290 0.039*
H13D −0.4334 0.0188 0.8615 0.043*
H13E −0.5479 0.1023 0.7632 0.043*
H13F −0.5402 0.0635 0.8938 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0288 (5) 0.0330 (6) 0.0494 (6) 0.0026 (4) 0.0270 (5) −0.0030 (4)
F2 0.0316 (5) 0.0277 (5) 0.0541 (7) 0.0076 (4) 0.0239 (5) 0.0092 (5)
F3 0.0242 (5) 0.0495 (7) 0.0348 (6) 0.0072 (4) 0.0000 (4) −0.0041 (5)
O12 0.0208 (5) 0.0387 (7) 0.0175 (6) 0.0017 (5) 0.0096 (5) 0.0017 (5)
O15 0.0213 (5) 0.0300 (6) 0.0169 (6) 0.0000 (4) 0.0065 (5) 0.0026 (4)
O41 0.0498 (8) 0.0485 (8) 0.0436 (8) −0.0091 (6) 0.0354 (7) −0.0007 (6)
O42 0.0190 (6) 0.0307 (7) 0.0522 (8) −0.0037 (5) 0.0138 (6) −0.0056 (6)
N4 0.0255 (7) 0.0240 (7) 0.0356 (8) −0.0028 (5) 0.0190 (6) −0.0046 (6)
N11 0.0165 (6) 0.0242 (7) 0.0173 (6) 0.0004 (5) 0.0088 (5) 0.0011 (5)
N14 0.0209 (6) 0.0295 (7) 0.0163 (6) −0.0012 (5) 0.0111 (5) 0.0011 (5)
C1 0.0176 (7) 0.0244 (8) 0.0165 (7) −0.0024 (6) 0.0093 (6) −0.0028 (6)
C2 0.0214 (7) 0.0198 (8) 0.0180 (7) −0.0003 (6) 0.0095 (6) 0.0001 (6)
C3 0.0177 (7) 0.0238 (8) 0.0172 (7) 0.0000 (6) 0.0072 (6) −0.0041 (6)
C4 0.0184 (7) 0.0261 (8) 0.0198 (7) −0.0050 (6) 0.0104 (6) −0.0053 (6)
C5 0.0240 (7) 0.0217 (8) 0.0186 (7) −0.0026 (6) 0.0098 (6) −0.0003 (6)
C6 0.0186 (7) 0.0230 (8) 0.0177 (7) 0.0014 (6) 0.0081 (6) −0.0009 (6)
C12 0.0197 (7) 0.0196 (8) 0.0182 (7) 0.0016 (6) 0.0099 (6) −0.0006 (6)
C13 0.0187 (7) 0.0254 (8) 0.0166 (7) −0.0011 (6) 0.0093 (6) −0.0002 (6)
C15 0.0225 (8) 0.0169 (7) 0.0187 (7) 0.0021 (6) 0.0112 (6) 0.0013 (6)
C31 0.0211 (8) 0.0273 (9) 0.0298 (9) −0.0004 (6) 0.0118 (7) −0.0022 (7)
C131 0.0213 (8) 0.0336 (9) 0.0264 (8) 0.0016 (7) 0.0142 (7) −0.0022 (7)
C132 0.0291 (8) 0.0289 (9) 0.0289 (9) −0.0069 (7) 0.0135 (7) −0.0027 (7)

Geometric parameters (Å, º)

F1—C31 1.3470 (18) C2—H2 0.9500
F2—C31 1.3381 (19) C3—C4 1.395 (2)
F3—C31 1.3313 (19) C3—C31 1.504 (2)
O12—C12 1.2133 (18) C4—C5 1.375 (2)
O15—C15 1.2101 (18) C5—C6 1.392 (2)
O41—N4 1.2210 (18) C5—H5 0.9500
O42—N4 1.2254 (18) C6—H6 0.9500
N4—C4 1.4762 (18) C12—C13 1.5258 (19)
N11—C12 1.3740 (18) C13—C131 1.529 (2)
N11—C15 1.4268 (18) C13—C132 1.530 (2)
N11—C1 1.4281 (17) C131—H13A 0.9800
N14—C15 1.3437 (18) C131—H13B 0.9800
N14—C13 1.4602 (19) C131—H13C 0.9800
N14—H14 0.841 (19) C132—H13D 0.9800
C1—C6 1.382 (2) C132—H13E 0.9800
C1—C2 1.385 (2) C132—H13F 0.9800
C2—C3 1.388 (2)
O41—N4—O42 125.39 (13) N11—C12—C13 106.92 (12)
O41—N4—C4 117.55 (13) N14—C13—C12 101.37 (11)
O42—N4—C4 117.04 (13) N14—C13—C131 111.39 (12)
C12—N11—C15 111.48 (11) C12—C13—C131 110.15 (12)
C12—N11—C1 126.52 (12) N14—C13—C132 112.05 (13)
C15—N11—C1 121.83 (12) C12—C13—C132 109.76 (12)
C15—N14—C13 113.43 (12) C131—C13—C132 111.66 (12)
C15—N14—H14 119.3 (12) O15—C15—N14 130.31 (14)
C13—N14—H14 122.2 (12) O15—C15—N11 123.39 (13)
C6—C1—C2 121.44 (13) N14—C15—N11 106.30 (12)
C6—C1—N11 120.12 (13) F3—C31—F2 106.75 (13)
C2—C1—N11 118.41 (13) F3—C31—F1 107.08 (12)
C1—C2—C3 120.15 (14) F2—C31—F1 106.13 (12)
C1—C2—H2 119.90 F3—C31—C3 112.82 (13)
C3—C2—H2 119.90 F2—C31—C3 111.52 (12)
C2—C3—C4 117.63 (13) F1—C31—C3 112.13 (13)
C2—C3—C31 118.88 (14) C13—C131—H13A 109.50
C4—C3—C31 123.48 (13) C13—C131—H13B 109.50
C5—C4—C3 122.64 (13) H13A—C131—H13B 109.50
C5—C4—N4 116.64 (13) C13—C131—H13C 109.50
C3—C4—N4 120.71 (13) H13A—C131—H13C 109.50
C4—C5—C6 119.02 (14) H13B—C131—H13C 109.50
C4—C5—H5 120.50 C13—C132—H13D 109.50
C6—C5—H5 120.50 C13—C132—H13E 109.50
C1—C6—C5 119.09 (13) H13D—C132—H13E 109.50
C1—C6—H6 120.50 C13—C132—H13F 109.50
C5—C6—H6 120.50 H13D—C132—H13F 109.50
O12—C12—N11 126.85 (13) H13E—C132—H13F 109.50
O12—C12—C13 126.22 (13)
C12—N11—C1—C6 51.1 (2) C15—N11—C12—C13 −1.60 (16)
C15—N11—C1—C6 −123.91 (15) C1—N11—C12—C13 −177.03 (13)
C12—N11—C1—C2 −130.60 (15) C15—N14—C13—C12 6.36 (16)
C15—N11—C1—C2 54.39 (19) C15—N14—C13—C131 −110.78 (14)
C6—C1—C2—C3 0.1 (2) C15—N14—C13—C132 123.33 (14)
N11—C1—C2—C3 −178.20 (13) O12—C12—C13—N14 177.45 (14)
C1—C2—C3—C4 −1.1 (2) N11—C12—C13—N14 −2.59 (15)
C1—C2—C3—C31 179.93 (13) O12—C12—C13—C131 −64.52 (19)
C2—C3—C4—C5 0.7 (2) N11—C12—C13—C131 115.44 (13)
C31—C3—C4—C5 179.61 (14) O12—C12—C13—C132 58.8 (2)
C2—C3—C4—N4 179.62 (13) N11—C12—C13—C132 −121.22 (13)
C31—C3—C4—N4 −1.4 (2) C13—N14—C15—O15 172.23 (15)
O41—N4—C4—C5 −55.63 (19) C13—N14—C15—N11 −7.49 (16)
O42—N4—C4—C5 122.84 (15) C12—N11—C15—O15 −174.20 (14)
O41—N4—C4—C3 125.35 (16) C1—N11—C15—O15 1.5 (2)
O42—N4—C4—C3 −56.18 (19) C12—N11—C15—N14 5.55 (16)
C3—C4—C5—C6 0.8 (2) C1—N11—C15—N14 −178.77 (13)
N4—C4—C5—C6 −178.24 (13) C2—C3—C31—F3 −99.05 (16)
C2—C1—C6—C5 1.4 (2) C4—C3—C31—F3 82.01 (18)
N11—C1—C6—C5 179.61 (13) C2—C3—C31—F2 21.1 (2)
C4—C5—C6—C1 −1.8 (2) C4—C3—C31—F2 −157.86 (14)
C15—N11—C12—O12 178.37 (15) C2—C3—C31—F1 139.95 (14)
C1—N11—C12—O12 2.9 (2) C4—C3—C31—F1 −39.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N14—H14···O12i 0.84 (2) 2.06 (2) 2.894 (2) 172.3 (15)

Symmetry code: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2702).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Cense, J. M., Agafanov, V., Ceolin, R., Ladure, P. & Rodier, N. (1994). Struct. Chem. 5, 79–84.
  3. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  4. Prince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407–410.
  5. Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812003728/rz2702sup1.cif

e-68-0o591-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003728/rz2702Isup2.hkl

e-68-0o591-Isup2.hkl (114.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003728/rz2702Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812003728/rz2702Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES