Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 4;68(Pt 3):o596. doi: 10.1107/S1600536812003923

(E)-2-({2-[(E)-(Hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-phenyl­acrylonitrile

Suresh Govindan a, Sabari Vijayakumar a, Srinivasan Jayakumar b, Bakthadoss Mannickam b, Aravindhan Sanmargam a,*
PMCID: PMC3297320  PMID: 22412510

Abstract

In the title compound, C17H14N2O2, the hy­droxy­ethanimine group adopts an anti­periplanar conformation. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming zigzag chains running along the c axis.

Related literature  

For the structures of other acrylate derivatives, see: Zhang et al. (2009); Wang et al. (2011); SakthiMurugesan et al. (2011); Govindan et al. (2011). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003). For the biological activity of caffeic acids, see: Hwang et al. (2001); Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Padinchare et al. (2001).graphic file with name e-68-0o596-scheme1.jpg

Experimental  

Crystal data  

  • C17H14N2O2

  • M r = 278.30

  • Monoclinic, Inline graphic

  • a = 15.8867 (5) Å

  • b = 6.2381 (2) Å

  • c = 15.1874 (4) Å

  • β = 107.199 (2)°

  • V = 1437.81 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection  

  • Oxford Diffraction Xcalibur-S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.980, T max = 0.990

  • 19516 measured reflections

  • 4490 independent reflections

  • 2774 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.131

  • S = 0.99

  • 4490 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003923/bt5765sup1.cif

e-68-0o596-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003923/bt5765Isup2.hkl

e-68-0o596-Isup2.hkl (215.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003923/bt5765Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2i 0.82 2.10 2.9187 (17) 178

Symmetry code: (i) Inline graphic.

Acknowledgments

AS thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008). These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al., 2006; Padinchare et al., 2001; Ates et al., 2006). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out and the results are presented here. X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The oxime group has the C=N bond in an E configuration. The hydroxy ethanimine group is essentially coplanar with the ring to which it is attached. The crystal packing is stabilized by an O—H···N hydrogen bond(Fig. 2).

Experimental

To a stirred solution of (E)-2-((2-formylphenoxy)methyl)-3-phenylacrylonitrile (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 τimes 15 ml). The combined organic layer was washed with brine (2 τimes 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-2-((2-((E)-(Hydroxyimino)methyl)phenoxy)methyl)-3-phenylacrylonitrile as a colourless solid.

Refinement

H atoms were positioned at calculated positions and refined using a riding model with O-H=0.82Å, Caromatic-H = 0.93Å and Cmethylene-H= 0.97Å and U(H) set to 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C17H14N2O2 F(000) = 584
Mr = 278.30 Dx = 1.286 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8725 reflections
a = 15.8867 (5) Å θ = 2.8–29.1°
b = 6.2381 (2) Å µ = 0.09 mm1
c = 15.1874 (4) Å T = 293 K
β = 107.199 (2)° Monoclinic, colourless
V = 1437.81 (7) Å3 0.2 × 0.2 × 0.2 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur-S diffractometer 4490 independent reflections
Radiation source: fine-focus sealed tube 2774 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 15.9948 pixels mm-1 θmax = 31.4°, θmin = 2.7°
ω scans h = −20→23
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −9→9
Tmin = 0.980, Tmax = 0.990 l = −22→22
19516 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.226P] where P = (Fo2 + 2Fc2)/3
4490 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.30906 (9) 0.0194 (2) 0.29768 (9) 0.0471 (3)
H1 0.2662 0.0231 0.2407 0.057*
C2 0.37843 (8) 0.1812 (2) 0.31995 (8) 0.0405 (3)
C3 0.44575 (9) 0.1763 (2) 0.40269 (9) 0.0500 (3)
H3 0.4456 0.0697 0.4455 0.060*
C4 0.51256 (9) 0.3247 (2) 0.42297 (9) 0.0525 (3)
H4 0.5574 0.3176 0.4784 0.063*
C5 0.51234 (9) 0.4837 (2) 0.36050 (10) 0.0542 (4)
H5 0.5574 0.5849 0.3740 0.065*
C6 0.44610 (9) 0.4954 (2) 0.27781 (9) 0.0488 (3)
H6 0.4464 0.6041 0.2360 0.059*
C7 0.37943 (8) 0.3449 (2) 0.25758 (8) 0.0399 (3)
C8 0.30879 (9) 0.5024 (2) 0.11052 (9) 0.0474 (3)
H8A 0.3612 0.4952 0.0904 0.057*
H8B 0.3058 0.6435 0.1363 0.057*
C9 0.22813 (8) 0.4609 (2) 0.03129 (8) 0.0411 (3)
C10 0.22894 (9) 0.2607 (2) −0.01427 (9) 0.0486 (3)
C11 0.16197 (9) 0.6014 (2) 0.00727 (8) 0.0444 (3)
H11 0.1718 0.7251 0.0431 0.053*
C12 0.07740 (9) 0.5990 (2) −0.06398 (8) 0.0435 (3)
C13 0.04331 (10) 0.4260 (2) −0.12169 (10) 0.0577 (4)
H13 0.0768 0.3021 −0.1177 0.069*
C14 −0.03912 (10) 0.4363 (3) −0.18424 (10) 0.0629 (4)
H14 −0.0607 0.3196 −0.2223 0.075*
C15 −0.08983 (10) 0.6164 (3) −0.19123 (11) 0.0633 (4)
H15 −0.1460 0.6212 −0.2330 0.076*
C16 −0.05728 (11) 0.7892 (3) −0.13634 (12) 0.0694 (5)
H16 −0.0911 0.9128 −0.1414 0.083*
C17 0.02527 (10) 0.7807 (2) −0.07360 (10) 0.0577 (4)
H17 0.0466 0.8996 −0.0368 0.069*
N1 0.30657 (8) −0.12586 (19) 0.35497 (8) 0.0527 (3)
N2 0.23413 (9) 0.0992 (2) −0.04726 (10) 0.0728 (4)
O1 0.23639 (8) −0.26430 (19) 0.31926 (8) 0.0716 (3)
H1A 0.2369 −0.3587 0.3570 0.107*
O2 0.31108 (6) 0.34087 (15) 0.17729 (6) 0.0487 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0432 (7) 0.0502 (8) 0.0433 (7) 0.0001 (6) 0.0055 (6) 0.0077 (6)
C2 0.0369 (6) 0.0437 (7) 0.0396 (6) 0.0029 (5) 0.0093 (5) 0.0023 (5)
C3 0.0488 (8) 0.0581 (8) 0.0397 (7) 0.0044 (7) 0.0079 (6) 0.0084 (6)
C4 0.0455 (8) 0.0654 (9) 0.0387 (7) 0.0008 (7) 0.0004 (6) −0.0043 (6)
C5 0.0488 (8) 0.0567 (9) 0.0514 (8) −0.0101 (7) 0.0061 (6) −0.0076 (7)
C6 0.0479 (8) 0.0474 (8) 0.0470 (7) −0.0046 (6) 0.0075 (6) 0.0040 (6)
C7 0.0359 (6) 0.0441 (7) 0.0372 (6) 0.0032 (5) 0.0070 (5) 0.0013 (5)
C8 0.0481 (8) 0.0434 (7) 0.0456 (7) −0.0020 (6) 0.0060 (6) 0.0092 (6)
C9 0.0460 (7) 0.0386 (6) 0.0367 (6) −0.0009 (5) 0.0090 (5) 0.0048 (5)
C10 0.0443 (8) 0.0476 (8) 0.0497 (7) 0.0045 (6) 0.0076 (6) 0.0034 (6)
C11 0.0524 (8) 0.0397 (7) 0.0387 (6) 0.0005 (6) 0.0096 (6) −0.0009 (5)
C12 0.0453 (7) 0.0462 (7) 0.0377 (6) 0.0033 (6) 0.0104 (5) 0.0028 (5)
C13 0.0551 (9) 0.0542 (9) 0.0547 (8) 0.0079 (7) 0.0023 (7) −0.0070 (7)
C14 0.0565 (10) 0.0695 (10) 0.0541 (9) −0.0032 (8) 0.0030 (7) −0.0095 (7)
C15 0.0449 (8) 0.0833 (12) 0.0551 (9) 0.0031 (8) 0.0048 (7) 0.0054 (8)
C16 0.0536 (10) 0.0700 (11) 0.0773 (11) 0.0192 (8) 0.0080 (8) 0.0012 (9)
C17 0.0551 (9) 0.0527 (9) 0.0602 (9) 0.0091 (7) 0.0093 (7) −0.0048 (7)
N1 0.0521 (7) 0.0517 (7) 0.0522 (7) −0.0081 (5) 0.0119 (5) 0.0032 (5)
N2 0.0731 (10) 0.0553 (8) 0.0837 (10) 0.0116 (7) 0.0136 (8) −0.0131 (7)
O1 0.0701 (8) 0.0631 (7) 0.0727 (7) −0.0239 (6) 0.0074 (6) 0.0106 (6)
O2 0.0427 (5) 0.0525 (5) 0.0421 (5) −0.0062 (4) −0.0009 (4) 0.0133 (4)

Geometric parameters (Å, º)

C1—N1 1.2649 (16) C9—C11 1.3339 (18)
C1—C2 1.4583 (18) C9—C10 1.4296 (19)
C1—H1 0.9300 C10—N2 1.1392 (17)
C2—C3 1.3889 (18) C11—C12 1.4548 (18)
C2—C7 1.3962 (17) C11—H11 0.9300
C3—C4 1.373 (2) C12—C17 1.3857 (19)
C3—H3 0.9300 C12—C13 1.3951 (19)
C4—C5 1.372 (2) C13—C14 1.373 (2)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.3814 (19) C14—C15 1.368 (2)
C5—H5 0.9300 C14—H14 0.9300
C6—C7 1.3804 (18) C15—C16 1.367 (2)
C6—H6 0.9300 C15—H15 0.9300
C7—O2 1.3725 (14) C16—C17 1.375 (2)
C8—O2 1.4225 (14) C16—H16 0.9300
C8—C9 1.4983 (18) C17—H17 0.9300
C8—H8A 0.9700 N1—O1 1.3876 (15)
C8—H8B 0.9700 O1—H1A 0.8200
N1—C1—C2 120.76 (12) C11—C9—C8 121.58 (12)
N1—C1—H1 119.6 C10—C9—C8 114.31 (11)
C2—C1—H1 119.6 N2—C10—C9 176.18 (16)
C3—C2—C7 118.02 (12) C9—C11—C12 132.56 (12)
C3—C2—C1 121.43 (12) C9—C11—H11 113.7
C7—C2—C1 120.55 (11) C12—C11—H11 113.7
C4—C3—C2 121.70 (13) C17—C12—C13 117.24 (13)
C4—C3—H3 119.2 C17—C12—C11 117.49 (12)
C2—C3—H3 119.2 C13—C12—C11 125.23 (12)
C5—C4—C3 119.26 (12) C14—C13—C12 120.79 (14)
C5—C4—H4 120.4 C14—C13—H13 119.6
C3—C4—H4 120.4 C12—C13—H13 119.6
C4—C5—C6 120.82 (13) C15—C14—C13 120.76 (15)
C4—C5—H5 119.6 C15—C14—H14 119.6
C6—C5—H5 119.6 C13—C14—H14 119.6
C7—C6—C5 119.64 (12) C16—C15—C14 119.48 (14)
C7—C6—H6 120.2 C16—C15—H15 120.3
C5—C6—H6 120.2 C14—C15—H15 120.3
O2—C7—C6 124.30 (11) C15—C16—C17 120.22 (15)
O2—C7—C2 115.14 (11) C15—C16—H16 119.9
C6—C7—C2 120.56 (11) C17—C16—H16 119.9
O2—C8—C9 106.60 (10) C16—C17—C12 121.48 (15)
O2—C8—H8A 110.4 C16—C17—H17 119.3
C9—C8—H8A 110.4 C12—C17—H17 119.3
O2—C8—H8B 110.4 C1—N1—O1 111.22 (11)
C9—C8—H8B 110.4 N1—O1—H1A 109.5
H8A—C8—H8B 108.6 C7—O2—C8 117.86 (9)
C11—C9—C10 124.11 (12)
N1—C1—C2—C3 2.7 (2) C8—C9—C11—C12 −178.61 (12)
N1—C1—C2—C7 −178.10 (13) C9—C11—C12—C17 −176.32 (13)
C7—C2—C3—C4 −1.05 (19) C9—C11—C12—C13 5.7 (2)
C1—C2—C3—C4 178.19 (12) C17—C12—C13—C14 −0.9 (2)
C2—C3—C4—C5 0.8 (2) C11—C12—C13—C14 177.09 (14)
C3—C4—C5—C6 −0.2 (2) C12—C13—C14—C15 −0.2 (2)
C4—C5—C6—C7 −0.2 (2) C13—C14—C15—C16 1.1 (3)
C5—C6—C7—O2 −179.43 (12) C14—C15—C16—C17 −1.0 (3)
C5—C6—C7—C2 0.0 (2) C15—C16—C17—C12 −0.1 (3)
C3—C2—C7—O2 −179.90 (11) C13—C12—C17—C16 1.1 (2)
C1—C2—C7—O2 0.86 (16) C11—C12—C17—C16 −177.09 (14)
C3—C2—C7—C6 0.63 (18) C2—C1—N1—O1 −178.97 (12)
C1—C2—C7—C6 −178.62 (12) C6—C7—O2—C8 0.00 (18)
O2—C8—C9—C11 116.39 (13) C2—C7—O2—C8 −179.45 (11)
O2—C8—C9—C10 −63.22 (14) C9—C8—O2—C7 −179.66 (10)
C10—C9—C11—C12 1.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N2i 0.82 2.10 2.9187 (17) 178

Symmetry code: (i) x, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5765).

References

  1. Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142. [DOI] [PubMed]
  2. Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289. [DOI] [PubMed]
  3. Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297. [DOI] [PubMed]
  4. Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753. [DOI] [PMC free article] [PubMed]
  7. Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437. [DOI] [PubMed]
  8. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  9. Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.
  10. SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. [DOI] [PMC free article] [PubMed]
  14. Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003923/bt5765sup1.cif

e-68-0o596-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003923/bt5765Isup2.hkl

e-68-0o596-Isup2.hkl (215.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003923/bt5765Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES