Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Oct;84(4):1124–1129. doi: 10.1172/JCI114275

Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action.

B Kiens 1, H Lithell 1, K J Mikines 1, E A Richter 1
PMCID: PMC329768  PMID: 2677048

Abstract

The effects of exercise and a physiological increase in plasma insulin concentration on muscle lipoprotein lipase activity (mLPLA), leg exchange of glucose, and serum lipoprotein levels were investigated in healthy young men. During euglycemic hyperinsulinemia (n = 7) at 44 mU.liter-1, m-LPLA in non-exercised muscle decreased from 30 +/- 7.4 mU.g-1 wet weight (w.w.) (mean +/- SE) to 19 +/- 3.3 (P less than 0.05). Furthermore, the decrease in m-LPLA correlated closely (r = 0.97, P less than 0.05) with the increase in leg glucose uptake. Moreover, basal m-LPLA correlated with the insulin-induced increase in leg glucose uptake (r = 0.93, P less than 0.05). In the control group (n = 6) in which saline was infused in place of insulin and glucose, m-LPLA in nonexercised muscle did not change with time. No change in m-LPLA was observed immediately after one-legged knee extension exercise, but 4 h after exercise m-LPLA was higher (P less than 0.05) in the exercised thigh (47 +/- 17.8 mU.g-1 w.w.) compared with the contralateral nonexercised thigh (29 +/- 6.3 mU.g-1 w.w.). This difference was not found 8 h after exercise. The triacylglycerol content of serum lipoproteins decreased during insulin infusion. It is concluded that in contrast to the effect on adipose tissue, physiological concentrations of insulin decrease m-LPLA in proportion to the effect of insulin on muscle glucose uptake, while muscle contractions cause a local, delayed, and transient increase in m-LPLA. Further-more, basal m-LPLA is an indicator of muscle insulin sensitivity.

Full text

PDF
1124

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen P., Adams R. P., Sjøgaard G., Thorboe A., Saltin B. Dynamic knee extension as model for study of isolated exercising muscle in humans. J Appl Physiol (1985) 1985 Nov;59(5):1647–1653. doi: 10.1152/jappl.1985.59.5.1647. [DOI] [PubMed] [Google Scholar]
  2. Andersen P., Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233–249. doi: 10.1113/jphysiol.1985.sp015794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arner P., Bolinder J., Engfeldt P., Lithell H. The relationship between the basal lipolytic and lipoprotein lipase activities in human adipose tissue. Int J Obes. 1983;7(2):167–172. [PubMed] [Google Scholar]
  4. Bartlett S. M., Gibbons G. F. Short- and longer-term regulation of very-low-density lipoprotein secretion by insulin, dexamethasone and lipogenic substrates in cultured hepatocytes. A biphasic effect of insulin. Biochem J. 1988 Jan 1;249(1):37–43. doi: 10.1042/bj2490037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bazelmans J., Nestel P. J., Nolan C. Insulin-induced glucose utilization influences triglyceride metabolism. Clin Sci (Lond) 1983 May;64(5):511–516. doi: 10.1042/cs0640511. [DOI] [PubMed] [Google Scholar]
  6. Christensen N. J., Vestergaard P., Sørensen T., Rafaelsen O. J. Cerebrospinal fluid adrenaline and noradrenaline in depressed patients. Acta Psychiatr Scand. 1980 Feb;61(2):178–182. doi: 10.1111/j.1600-0447.1980.tb00577.x. [DOI] [PubMed] [Google Scholar]
  7. DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
  8. Essén B., Lindholm A., Thornton J. Histochemical properties of muscle fibres types and enzyme activities in skeletal muscles of Standardbred trotters of different ages. Equine Vet J. 1980 Oct;12(4):175–180. doi: 10.1111/j.2042-3306.1980.tb03420.x. [DOI] [PubMed] [Google Scholar]
  9. Górski J., Stankiewicz-Choroszucha B. The effect of hormones on lipoprotein lipase activity in skeletal muscles of the rat. Horm Metab Res. 1982 Apr;14(4):189–191. doi: 10.1055/s-2007-1018965. [DOI] [PubMed] [Google Scholar]
  10. Jacobs I., Lithell H., Karlsson J. Dietary effects on glycogen and lipoprotein lipase activity in skeletal muscle in man. Acta Physiol Scand. 1982 May;115(1):85–90. doi: 10.1111/j.1748-1716.1982.tb07048.x. [DOI] [PubMed] [Google Scholar]
  11. Kern P. A., Mandic A., Eckel R. H. Regulation of lipoprotein lipase by glucose in primary cultures of isolated human adipocytes. Relevance to hypertriglyceridemia of diabetes. Diabetes. 1987 Nov;36(11):1238–1245. doi: 10.2337/diab.36.11.1238. [DOI] [PubMed] [Google Scholar]
  12. Kern P. A., Marshall S., Eckel R. H. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes. J Clin Invest. 1985 Jan;75(1):199–208. doi: 10.1172/JCI111675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kiens B., Lithell H. Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. J Clin Invest. 1989 Feb;83(2):558–564. doi: 10.1172/JCI113918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lillioja S., Young A. A., Culter C. L., Ivy J. L., Abbott W. G., Zawadzki J. K., Yki-Järvinen H., Christin L., Secomb T. W., Bogardus C. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest. 1987 Aug;80(2):415–424. doi: 10.1172/JCI113088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lithell H., Boberg J. Determination of lipoprotein-lipase activity in human skeletal muscle tissue. Biochim Biophys Acta. 1978 Jan 27;528(1):58–68. doi: 10.1016/0005-2760(78)90052-8. [DOI] [PubMed] [Google Scholar]
  16. Lithell H., Cedermark M., Fröberg J., Tesch P., Karlsson J. Increase of lipoprotein-lipase activity in skeletal muscle during heavy exercise. Relation to epinephrine excretion. Metabolism. 1981 Nov;30(11):1130–1134. doi: 10.1016/0026-0495(81)90059-7. [DOI] [PubMed] [Google Scholar]
  17. Lithell H., Hellsing K., Lundqvist G., Malmberg P. Lipoprotein-lipase activity of human skeletal-muscle and adipose tissue after intensive physical exercise. Acta Physiol Scand. 1979 Mar;105(3):312–315. doi: 10.1111/j.1748-1716.1979.tb06346.x. [DOI] [PubMed] [Google Scholar]
  18. Lithell H., Karlström B., Selinus I., Vessby B., Fellström B. Is muscle lipoprotein lipase inactivated by ordinary amounts of dietary carbohydrates? Hum Nutr Clin Nutr. 1985 Jul;39(4):289–295. [PubMed] [Google Scholar]
  19. Mangiapane E. H., Brindley D. N. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes. Biochem J. 1986 Jan 1;233(1):151–160. doi: 10.1042/bj2330151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nilsson-Ehle P., Schotz M. C. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res. 1976 Sep;17(5):536–541. [PubMed] [Google Scholar]
  21. Richter E. A., Mikines K. J., Galbo H., Kiens B. Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol (1985) 1989 Feb;66(2):876–885. doi: 10.1152/jappl.1989.66.2.876. [DOI] [PubMed] [Google Scholar]
  22. Sadur C. N., Eckel R. H. Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest. 1982 May;69(5):1119–1125. doi: 10.1172/JCI110547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saltiel A. R., Fox J. A., Sherline P., Cuatrecasas P. Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science. 1986 Aug 29;233(4767):967–972. doi: 10.1126/science.3016898. [DOI] [PubMed] [Google Scholar]
  24. Shimizu S., Inoue K., Tani Y., Yamada H. Enzymatic microdetermination of serum free fatty acids. Anal Biochem. 1979 Oct 1;98(2):341–345. doi: 10.1016/0003-2697(79)90151-9. [DOI] [PubMed] [Google Scholar]
  25. Standaert M. L., Farese R. V., Cooper D. R., Pollet R. J. Insulin-induced glycerolipid mediators and the stimulation of glucose transport in BC3H-1 myocytes. J Biol Chem. 1988 Jun 25;263(18):8696–8705. [PubMed] [Google Scholar]
  26. Strålfors P. Insulin stimulation of glucose uptake can be mediated by diacylglycerol in adipocytes. Nature. 1988 Oct 6;335(6190):554–556. doi: 10.1038/335554a0. [DOI] [PubMed] [Google Scholar]
  27. Vessby B., Boberg J., Gustafsson I. B., Karlström B., Lithell H., Ostlund-Linqvist A. M. Reduction of high density lipoprotein cholesterol and apoliproprotein A-I concentrations by a lipid-lowering diet. Atherosclerosis. 1980 Jan;35(1):21–27. doi: 10.1016/0021-9150(80)90024-6. [DOI] [PubMed] [Google Scholar]
  28. Yki-Järvinen H., Taskinen M. R., Koivisto V. A., Nikkilä E. A. Response of adipose tissue lipoprotein lipase activity and serum lipoproteins to acute hyperinsulinaemia in man. Diabetologia. 1984 Sep;27(3):364–369. doi: 10.1007/BF00304851. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES