Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o770. doi: 10.1107/S1600536812003844

(E)-(2-Chloro­benzyl­idene)amino 2-amino-4-chloro­benzoate

Weiyan Yin a,*, Zhi Wang a, Ying Liang a, Zi-Wen Yang a
PMCID: PMC3297841  PMID: 22412644

Abstract

In the title compound, C14H10Cl2N2O2, the configuration about the C=N double bond is E and the dihedral angle between the benzene rings is 1.75 (5)°. An intra­molecular N—H⋯O inter­action generates an S(6) ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, resulting in [101] chains.

Related literature  

For background to 2-amino-4-chloro­benzoic acid derivatives, see: Jahnke et al. (2010); Lee et al. (2005). For a related structure, see: Seong et al. (2008).graphic file with name e-68-0o770-scheme1.jpg

Experimental  

Crystal data  

  • C14H10Cl2N2O2

  • M r = 309.14

  • Monoclinic, Inline graphic

  • a = 7.4034 (5) Å

  • b = 23.8190 (15) Å

  • c = 7.6362 (5) Å

  • β = 96.382 (1)°

  • V = 1338.23 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.16 × 0.15 × 0.10 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.926, T max = 0.953

  • 12076 measured reflections

  • 3879 independent reflections

  • 3637 reflections with I > 2σ(I)

  • R int = 0.015

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.084

  • S = 1.05

  • 3879 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812003844/hb6586sup1.cif

e-68-0o770-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003844/hb6586Isup2.hkl

e-68-0o770-Isup2.hkl (190.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003844/hb6586Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.88 2.02 2.6653 (12) 130
N2—H2A⋯O2i 0.88 2.19 2.9332 (12) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge financial support of this work by the Foundation of Hubei Agricultural Scientific and Technological Innovation.

supplementary crystallographic information

Comment

2-Amino-4-chlorobenzoic acid derivatives show diverse biological properties such as inhibitor of the prostaglandin H2 synthase peroxidase activity (Lee et al., 2005) and allosteric inhibitors of Bcr-Abl (Jahnke et al., 2010). As a part of our studies of 2-aminobenzoic acid-containing compounds with potential biological activities, we report here the crystal structure of the title compound, (I) (Fig. 1).

The conformation of the N—H and the C=O bonds in the 2-aminobenzoic acid segment is similar to that observed in other 2-aminobenzoic acid compound (Seong et al., 2008). The dihedral angles between the two phenyl rings is 1.75 (5)°. The molecular structure is linked by N—H···O hydrogen-bonds (Table 1).

Experimental

Dicyclohexylcarbodiimide (1.1 g, 5.0 mmol) and 4-dimethylamiopryidine(0.25 g, 1.0 mmol) was added to a mixture of 2-chlorobenzaldehyde oxime (0.78 g, 5.0 mmol) and 2-amino-4-chlorobenzoic acid (0.86 g, 5.0 mmol) in dichloromethane (30 ml). The reaction mixture was stirred for 14 h at 353 k. The product was collected by filtration give a gray solid and recrystallization from its ether solution yielded colourless prisms of (I) after a few days.

Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.97Å and N—H = 0.86 Å), and refined as riding with Uiso (H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal Packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C14H10Cl2N2O2 F(000) = 632
Mr = 309.14 Dx = 1.534 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.4034 (5) Å Cell parameters from 9848 reflections
b = 23.8190 (15) Å θ = 2.8–32.0°
c = 7.6362 (5) Å µ = 0.49 mm1
β = 96.382 (1)° T = 100 K
V = 1338.23 (15) Å3 Block, colorless
Z = 4 0.16 × 0.15 × 0.10 mm

Data collection

Bruker SMART APEX CCD diffractometer 3879 independent reflections
Radiation source: fine-focus sealed tube 3637 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.015
φ and ω scans θmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→10
Tmin = 0.926, Tmax = 0.953 k = −33→32
12076 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.5103P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3879 reflections Δρmax = 0.53 e Å3
182 parameters Δρmin = −0.53 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0048 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.45478 (14) 0.08217 (4) 0.17648 (13) 0.01523 (18)
C2 0.36816 (14) 0.09752 (5) 0.01219 (13) 0.01805 (19)
H2 0.3133 0.0698 −0.0659 0.022*
C3 0.36279 (15) 0.15379 (5) −0.03640 (14) 0.0197 (2)
H3 0.3043 0.1646 −0.1483 0.024*
C4 0.44295 (15) 0.19433 (5) 0.07849 (14) 0.0190 (2)
H4 0.4383 0.2328 0.0453 0.023*
C5 0.52956 (14) 0.17850 (4) 0.24135 (13) 0.01681 (19)
H5 0.5854 0.2063 0.3184 0.020*
C6 0.53611 (13) 0.12204 (4) 0.29440 (13) 0.01445 (18)
C7 0.62742 (13) 0.10574 (4) 0.46828 (13) 0.01528 (18)
H7 0.6660 0.0682 0.4918 0.018*
C9 0.80555 (13) 0.16068 (4) 0.86039 (13) 0.01431 (18)
C10 0.89159 (13) 0.13801 (4) 1.02756 (13) 0.01340 (17)
C11 0.97488 (13) 0.17569 (4) 1.15683 (13) 0.01466 (18)
C12 1.05960 (14) 0.15271 (4) 1.31596 (13) 0.01651 (19)
H12 1.1176 0.1767 1.4044 0.020*
C13 1.05789 (14) 0.09568 (4) 1.34250 (13) 0.01679 (19)
C14 0.97615 (14) 0.05787 (4) 1.21752 (14) 0.01768 (19)
H14 0.9772 0.0186 1.2394 0.021*
C15 0.89387 (13) 0.07991 (4) 1.06104 (13) 0.01523 (18)
H15 0.8374 0.0552 0.9739 0.018*
Cl1 0.45712 (4) 0.011502 (10) 0.23325 (3) 0.01985 (8)
Cl2 1.16302 (4) 0.069412 (12) 1.54105 (3) 0.02424 (8)
N1 0.65290 (13) 0.14358 (4) 0.58580 (12) 0.01819 (18)
N2 0.97461 (13) 0.23234 (4) 1.13648 (13) 0.02025 (19)
H2A 1.0264 0.2539 1.2213 0.024*
H2B 0.9226 0.2475 1.0385 0.024*
O1 0.74622 (10) 0.11954 (3) 0.74289 (10) 0.01663 (15)
O2 0.78875 (12) 0.21027 (3) 0.82487 (11) 0.02169 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0162 (4) 0.0151 (4) 0.0144 (4) 0.0010 (3) 0.0017 (3) −0.0007 (3)
C2 0.0188 (4) 0.0214 (5) 0.0136 (4) 0.0015 (4) −0.0002 (3) −0.0026 (3)
C3 0.0209 (5) 0.0236 (5) 0.0145 (4) 0.0046 (4) 0.0011 (4) 0.0016 (4)
C4 0.0220 (5) 0.0179 (4) 0.0173 (4) 0.0025 (4) 0.0034 (4) 0.0030 (4)
C5 0.0192 (4) 0.0158 (4) 0.0156 (4) −0.0005 (3) 0.0027 (3) −0.0001 (3)
C6 0.0147 (4) 0.0159 (4) 0.0127 (4) 0.0010 (3) 0.0018 (3) 0.0001 (3)
C7 0.0158 (4) 0.0157 (4) 0.0140 (4) −0.0002 (3) 0.0002 (3) 0.0006 (3)
C9 0.0131 (4) 0.0141 (4) 0.0151 (4) −0.0011 (3) −0.0016 (3) 0.0003 (3)
C10 0.0129 (4) 0.0133 (4) 0.0134 (4) −0.0004 (3) −0.0014 (3) 0.0004 (3)
C11 0.0134 (4) 0.0142 (4) 0.0160 (4) −0.0009 (3) −0.0001 (3) −0.0010 (3)
C12 0.0155 (4) 0.0195 (5) 0.0139 (4) −0.0010 (3) −0.0008 (3) −0.0010 (3)
C13 0.0150 (4) 0.0217 (5) 0.0133 (4) 0.0003 (3) −0.0002 (3) 0.0041 (3)
C14 0.0181 (4) 0.0157 (4) 0.0187 (5) −0.0008 (3) −0.0003 (4) 0.0040 (3)
C15 0.0152 (4) 0.0134 (4) 0.0166 (4) −0.0012 (3) −0.0005 (3) 0.0009 (3)
Cl1 0.02618 (14) 0.01429 (12) 0.01833 (13) −0.00055 (8) −0.00089 (9) −0.00137 (8)
Cl2 0.02529 (14) 0.03026 (15) 0.01581 (13) −0.00042 (10) −0.00378 (10) 0.00817 (9)
N1 0.0215 (4) 0.0180 (4) 0.0137 (4) 0.0028 (3) −0.0036 (3) 0.0012 (3)
N2 0.0244 (4) 0.0134 (4) 0.0210 (4) −0.0021 (3) −0.0062 (3) −0.0016 (3)
O1 0.0210 (4) 0.0146 (3) 0.0130 (3) 0.0009 (3) −0.0041 (3) −0.0002 (2)
O2 0.0264 (4) 0.0138 (3) 0.0223 (4) −0.0026 (3) −0.0090 (3) 0.0035 (3)

Geometric parameters (Å, º)

C1—C2 1.3928 (14) C9—C10 1.4649 (13)
C1—C6 1.3980 (14) C10—C15 1.4071 (13)
C1—Cl1 1.7378 (10) C10—C11 1.4230 (13)
C2—C3 1.3902 (15) C11—N2 1.3581 (13)
C2—H2 0.9500 C11—C12 1.4143 (14)
C3—C4 1.3923 (15) C12—C13 1.3736 (14)
C3—H3 0.9500 C12—H12 0.9500
C4—C5 1.3866 (14) C13—C14 1.3999 (15)
C4—H4 0.9500 C13—Cl2 1.7417 (10)
C5—C6 1.4039 (14) C14—C15 1.3829 (14)
C5—H5 0.9500 C14—H14 0.9500
C6—C7 1.4735 (14) C15—H15 0.9500
C7—N1 1.2712 (13) N1—O1 1.4352 (11)
C7—H7 0.9500 N2—H2A 0.8800
C9—O2 1.2151 (12) N2—H2B 0.8800
C9—O1 1.3677 (12)
C2—C1—C6 121.62 (9) C15—C10—C11 119.92 (9)
C2—C1—Cl1 118.01 (8) C15—C10—C9 121.07 (9)
C6—C1—Cl1 120.37 (8) C11—C10—C9 119.01 (9)
C3—C2—C1 119.34 (10) N2—C11—C12 118.53 (9)
C3—C2—H2 120.3 N2—C11—C10 123.52 (9)
C1—C2—H2 120.3 C12—C11—C10 117.94 (9)
C2—C3—C4 120.20 (10) C13—C12—C11 119.94 (9)
C2—C3—H3 119.9 C13—C12—H12 120.0
C4—C3—H3 119.9 C11—C12—H12 120.0
C5—C4—C3 119.92 (10) C12—C13—C14 123.09 (9)
C5—C4—H4 120.0 C12—C13—Cl2 118.24 (8)
C3—C4—H4 120.0 C14—C13—Cl2 118.67 (8)
C4—C5—C6 121.13 (10) C15—C14—C13 117.41 (9)
C4—C5—H5 119.4 C15—C14—H14 121.3
C6—C5—H5 119.4 C13—C14—H14 121.3
C1—C6—C5 117.79 (9) C14—C15—C10 121.70 (9)
C1—C6—C7 121.54 (9) C14—C15—H15 119.1
C5—C6—C7 120.67 (9) C10—C15—H15 119.1
N1—C7—C6 117.81 (9) C7—N1—O1 109.09 (8)
N1—C7—H7 121.1 C11—N2—H2A 120.0
C6—C7—H7 121.1 C11—N2—H2B 120.0
O2—C9—O1 122.17 (9) H2A—N2—H2B 120.0
O2—C9—C10 125.21 (9) C9—O1—N1 110.62 (7)
O1—C9—C10 112.61 (8)
C6—C1—C2—C3 0.25 (16) C15—C10—C11—N2 −178.31 (10)
Cl1—C1—C2—C3 179.50 (8) C9—C10—C11—N2 2.12 (15)
C1—C2—C3—C4 −0.16 (16) C15—C10—C11—C12 0.59 (14)
C2—C3—C4—C5 0.48 (16) C9—C10—C11—C12 −178.99 (9)
C3—C4—C5—C6 −0.89 (16) N2—C11—C12—C13 178.24 (10)
C2—C1—C6—C5 −0.63 (15) C10—C11—C12—C13 −0.71 (15)
Cl1—C1—C6—C5 −179.86 (8) C11—C12—C13—C14 0.47 (16)
C2—C1—C6—C7 179.90 (9) C11—C12—C13—Cl2 −179.67 (8)
Cl1—C1—C6—C7 0.66 (14) C12—C13—C14—C15 −0.08 (16)
C4—C5—C6—C1 0.95 (15) Cl2—C13—C14—C15 −179.94 (8)
C4—C5—C6—C7 −179.57 (9) C13—C14—C15—C10 −0.04 (15)
C1—C6—C7—N1 −160.77 (10) C11—C10—C15—C14 −0.22 (15)
C5—C6—C7—N1 19.77 (14) C9—C10—C15—C14 179.35 (9)
O2—C9—C10—C15 175.68 (10) C6—C7—N1—O1 −178.86 (8)
O1—C9—C10—C15 −5.26 (14) O2—C9—O1—N1 −4.58 (14)
O2—C9—C10—C11 −4.74 (16) C10—C9—O1—N1 176.34 (8)
O1—C9—C10—C11 174.31 (9) C7—N1—O1—C9 168.81 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O2 0.88 2.02 2.6653 (12) 130
N2—H2A···O2i 0.88 2.19 2.9332 (12) 142

Symmetry code: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6586).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Jahnke, W., Grotzfeld, R. M., Pelle, X., Strauss, A., Fendrich, G., Cowan-Jacob, S. W., Cotesta, S., Fabbro, D., Furet, P., Mestan, D. & Marzinzik, A. L. (2010). J. Am. Chem. Soc. 132, 7043–7048. [DOI] [PubMed]
  3. Lee, J., Chubb, A. J., Moman, E., McLoughlin, B. M., Sharkey, C. T., Kelly, J. G., Nolan, K. B., Devocelle, M. & Fitzgerald, D. J. (2005). Org. Biomol. Chem. 3, 3678–3685. [DOI] [PubMed]
  4. Seong, C. M., Park, W. K., Park, C. M., Kong, J. Y. & Park, N. S. (2008). Bioorg. Med. Chem. Lett. 18, 738–743. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812003844/hb6586sup1.cif

e-68-0o770-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003844/hb6586Isup2.hkl

e-68-0o770-Isup2.hkl (190.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003844/hb6586Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES