Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o773. doi: 10.1107/S1600536812006496

(R)-N-(3-Meth­oxy­phen­yl)-tert-butane­sulfinamide

Xiaofei Sun a, Chuan Dai a, Xingzhao Tu a, Wenguo Wang b, Qingle Zeng a,*
PMCID: PMC3297844  PMID: 22412647

Abstract

The title compound, C11H17NO2S, was obtained by the reaction of (R)-tert-butane­sulfinamide with 3-meth­oxy­phenyl bromide in toluene. In the crystal, mol­ecules inter­act head-to-tail through N—H⋯O and C—H⋯O hydrogen bonds, forming one-dimensional chains parallel to the a axis.

Related literature  

For the structure of the racemic title compound, see: Datta et al. (2010). For the structures of related N-aryl­alkanesulfinamides, see: Datta et al. (2008, 2009a ,b ). For the structures of related N-alkyl­alkanesulfinamides, see: Sato et al. (1975); Schuckmann et al. (1978); Ferreira et al. (2005).graphic file with name e-68-0o773-scheme1.jpg

Experimental  

Crystal data  

  • C11H17NO2S

  • M r = 227.33

  • Orthorhombic, Inline graphic

  • a = 7.4418 (9) Å

  • b = 9.7027 (12) Å

  • c = 16.862 (2) Å

  • V = 1217.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.990, T max = 1.0

  • 7010 measured reflections

  • 2481 independent reflections

  • 2062 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.092

  • S = 1.10

  • 2481 reflections

  • 204 parameters

  • All H-atom parameters refined

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983), 1029 Friedel pairs

  • Flack parameter: −0.02 (9)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812006496/rz2711sup1.cif

e-68-0o773-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006496/rz2711Isup4.hkl

e-68-0o773-Isup4.hkl (121.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006496/rz2711Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.80 (2) 2.28 (3) 3.031 (3) 157 (2)
C10—H10A⋯O2i 1.02 (3) 2.47 (3) 3.487 (4) 171 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the National Science Foundation of China (grant No. 20672088), the Ministry of Human Resources and Social Security of China, the Science and Technology Bureau of Sichuan (grant No. 2011HH0016), the Opening Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, and the Cultivating Programme for Excellent Innovation Team of Chengdu University of Technology (grant No. HY0084) for financial support.

supplementary crystallographic information

Comment

Sulfinamides, especially chiral sulfinamides, are an important class of organic compounds in modern organic chemistry, and a great number of such compounds have been synthesized. In our study on sulfinamides, we have prepared the title compound and report its crystal structure herein.

In the molecule of the title compound (Fig. 1), the N–Caryl bond length [1.416 (3) Å] is quite similar to that found in the racemic 3-MeO-N-phenyl-tert-butanesulfinamide (1.418 (2) Å; Datta et al., 2010), and could be compared with those reported for 4-MeO-N-phenyl-tert-butanesulfinamide (1.4225 (14) Å; Datta et al., 2009a), N-phenyl-tert-butanesulfinamide (1.4083 (12) Å; Datta et al., 2009b) and other N-alkylalkanesulfinamides (1.470–1.530 Å; Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). The crystal packing shows an intermolecular interaction through N-H···O=S hydrogen bond, forming a chain structure parallel to the a axis (Fig. 2; Table 1). In addition, the chain is enforced by an intermolecular C-H···O=S hydrogen bond as observed in the crystal packing of N-phenyladamantane-1-sulfinamide (Datta et al., 2008).

Experimental

A oven-dried ground test tube, which was equipped with a magnetic stir bar and fitted with a rubber septum, was charged with (R)-tert-butanesulfinamide (0.121 g, 1.0 mmol), Pd2(dba)3 (0.018 g, 0.02 mmol; dba is dibenzylideneacetone), 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl (0.0212 g, 0.05 mmol) and NaOH (0.08 g, 2 mmol). The vessel was evacuated and backfilled with argon three times, then 3-methoxyphenyl bromide (1.3 mmol), toluene (10 ml) and degassed water (0.3 mL) were added via syringe. The solution was stirred at 90°C for 20 h. The reaction mixture was then cooled to room temperature, quenched by water, and extracted with ethyl acetate (20 mL) for twice. The organic layer was combined, and dried over anhydrous sodium sulfate and filtrated. The filterate was condensed under vacuum. The residual was purified with silica gel column chromatography with a solution of petroleum ether and ethyl acetate (5:1 v:v) as eluent. A test tube containing the eluate was covered with a piece of filter paper and placed motionless at room temperature, and a single crystal was cultured in the bottom of the test tube. Yield: 0.186 g, 82%. Spectroscopic analysis: ESI-MS (negative mode), m/z = 226 [M-H]-. FTIR (KBr) (cm-1): 3456, 3273, 3112, 3076, 2966, 1584, 1519, 1246, 1186, 1113, 1068, 875, 795, 751. 1H NMR (300 MHz, CDCl3), δ (ppm): 7.16 (t, J = 8.2 Hz, 1H), 5.60-5.55 (m, 3H), 5.34 (s, 1H), 3.78(s, 3H), 1.33 (s, 9H). 13C NMR (300 MHz, CD3OD), δ (ppm): 160.2, 143.5, 129.8, 110.1, 107.9, 103.5, 56.3, 54.9, 22.3. [α]D = -2.6 (c 0.05, ethyl acetate).

Refinement

All H atoms were located in a difference Fourier map and refined freely (N—H = 0.80 (2) Å; C—H = 0.90 (3)–1.03 (3) Å). The absolute configuration was assigned by reference to the unchanging chiral centre in the synthetic procedure.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The chain structure of the title compound formed by intermolecular N—H···O hydrogen bonds (dashed lines).

Crystal data

C11H17NO2S Dx = 1.246 Mg m3
Mr = 227.33 Melting point: 375 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2ab Cell parameters from 2411 reflections
a = 7.4418 (9) Å θ = 3.0–29.1°
b = 9.7027 (12) Å µ = 0.25 mm1
c = 16.862 (2) Å T = 293 K
V = 1217.5 (3) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.20 mm
F(000) = 488

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2481 independent reflections
Radiation source: fine-focus sealed tube 2062 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 16.0874 pixels mm-1 θmax = 26.4°, θmin = 3.0°
ω scans h = −9→6
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −12→12
Tmin = 0.990, Tmax = 1.0 l = −18→21
7010 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0403P)2] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2481 reflections Δρmax = 0.22 e Å3
204 parameters Δρmin = −0.29 e Å3
0 restraints Absolute structure: Flack (1983), 1029 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.84124 (9) −0.41552 (6) −0.07783 (3) 0.04091 (18)
O1 −0.6725 (4) 0.18196 (19) −0.18439 (11) 0.0691 (6)
O2 −1.0171 (2) −0.39294 (19) −0.03812 (10) 0.0543 (5)
N1 −0.7259 (3) −0.2699 (2) −0.08452 (13) 0.0464 (5)
C1 −0.7230 (3) 0.0498 (3) −0.20153 (15) 0.0468 (7)
C2 −0.7075 (3) −0.0421 (3) −0.13905 (15) 0.0416 (6)
C3 −0.7532 (3) −0.1789 (3) −0.14907 (14) 0.0390 (6)
C4 −0.8154 (4) −0.2233 (3) −0.22198 (15) 0.0540 (7)
C5 −0.8331 (5) −0.1298 (3) −0.28284 (17) 0.0627 (8)
C6 −0.7857 (4) 0.0065 (3) −0.27436 (17) 0.0561 (8)
C7 −0.6704 (6) 0.2798 (4) −0.2476 (2) 0.0730 (10)
C8 −0.6971 (3) −0.5045 (3) −0.00507 (14) 0.0423 (6)
C9 −0.5083 (4) −0.5131 (4) −0.0392 (2) 0.0621 (8)
C10 −0.7023 (5) −0.4311 (3) 0.07445 (17) 0.0527 (7)
C11 −0.7817 (6) −0.6475 (3) 0.0011 (2) 0.0618 (9)
H9C −0.509 (4) −0.550 (3) −0.0879 (18) 0.060 (9)*
H2 −0.667 (3) −0.012 (2) −0.0913 (14) 0.041 (6)*
H10A −0.641 (4) −0.337 (3) 0.0697 (16) 0.074 (9)*
H7B −0.593 (4) 0.247 (3) −0.2904 (19) 0.071 (10)*
H9B −0.438 (5) −0.567 (4) −0.005 (2) 0.113 (14)*
H9A −0.439 (4) −0.423 (3) −0.0417 (16) 0.065 (9)*
H5 −0.878 (4) −0.161 (3) −0.3324 (17) 0.060 (8)*
H6 −0.807 (4) 0.066 (3) −0.3158 (15) 0.056 (8)*
H1 −0.692 (4) −0.237 (2) −0.0438 (14) 0.039 (7)*
H4 −0.845 (4) −0.312 (3) −0.2268 (15) 0.056 (8)*
H11C −0.913 (5) −0.641 (3) 0.0169 (18) 0.069 (10)*
H10C −0.819 (4) −0.425 (3) 0.0947 (17) 0.077 (10)*
H11A −0.709 (4) −0.705 (3) 0.0376 (17) 0.071 (9)*
H10B −0.643 (4) −0.481 (3) 0.1119 (16) 0.061 (8)*
H7A −0.620 (5) 0.361 (4) −0.224 (2) 0.103 (14)*
H7C −0.793 (5) 0.285 (4) −0.2714 (18) 0.095 (13)*
H11B −0.775 (4) −0.695 (3) −0.0537 (18) 0.075 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0392 (3) 0.0430 (3) 0.0405 (3) −0.0007 (3) −0.0001 (3) −0.0027 (3)
O1 0.0977 (18) 0.0545 (11) 0.0550 (11) −0.0043 (13) −0.0024 (13) 0.0189 (9)
O2 0.0394 (10) 0.0641 (12) 0.0594 (12) 0.0039 (10) 0.0060 (9) 0.0031 (9)
N1 0.0555 (14) 0.0464 (12) 0.0374 (12) −0.0082 (10) −0.0103 (12) 0.0041 (10)
C1 0.0424 (16) 0.0568 (16) 0.0414 (13) 0.0049 (12) 0.0027 (13) 0.0091 (11)
C2 0.0401 (15) 0.0520 (15) 0.0326 (13) 0.0047 (11) 0.0005 (12) 0.0048 (11)
C3 0.0304 (14) 0.0538 (14) 0.0328 (12) 0.0025 (11) 0.0020 (12) 0.0059 (10)
C4 0.061 (2) 0.0594 (17) 0.0419 (15) −0.0038 (16) −0.0022 (14) −0.0001 (13)
C5 0.067 (2) 0.088 (2) 0.0333 (14) −0.0040 (19) −0.0088 (17) −0.0004 (13)
C6 0.0509 (18) 0.076 (2) 0.0412 (15) 0.0086 (16) 0.0015 (14) 0.0183 (14)
C7 0.075 (3) 0.075 (2) 0.068 (2) −0.007 (2) 0.004 (2) 0.0300 (18)
C8 0.0428 (15) 0.0392 (12) 0.0448 (14) 0.0019 (12) −0.0018 (12) 0.0021 (10)
C9 0.0529 (19) 0.065 (2) 0.068 (2) 0.0114 (18) 0.0010 (19) −0.0014 (18)
C10 0.0557 (19) 0.0586 (17) 0.0439 (14) −0.0086 (15) −0.0047 (16) 0.0064 (14)
C11 0.072 (3) 0.0414 (16) 0.072 (2) −0.0058 (15) −0.007 (2) 0.0048 (15)

Geometric parameters (Å, º)

S1—O2 1.4866 (18) C6—H6 0.92 (3)
S1—N1 1.657 (2) C7—H7B 0.98 (3)
S1—C8 1.844 (2) C7—H7A 0.96 (4)
O1—C1 1.367 (3) C7—H7C 1.00 (4)
O1—C7 1.428 (3) C8—C9 1.521 (4)
N1—C3 1.416 (3) C8—C10 1.519 (4)
N1—H1 0.80 (2) C8—C11 1.527 (4)
C1—C2 1.385 (3) C9—H9C 0.90 (3)
C1—C6 1.379 (4) C9—H9B 0.93 (4)
C2—C3 1.381 (3) C9—H9A 1.01 (3)
C2—H2 0.91 (2) C10—H10A 1.02 (3)
C3—C4 1.382 (4) C10—H10C 0.94 (3)
C4—C5 1.376 (4) C10—H10B 0.91 (3)
C4—H4 0.90 (3) C11—H11C 1.02 (3)
C5—C6 1.376 (4) C11—H11A 0.99 (3)
C5—H5 0.95 (3) C11—H11B 1.03 (3)
S1—N1—H1 116.3 (18) C8—C9—H9C 111.4 (19)
O1—C1—C2 114.8 (2) C8—C9—H9B 109 (2)
O1—C1—C6 124.5 (2) C8—C9—H9A 115.9 (17)
O1—C7—H7B 109.7 (18) C8—C10—H10A 109.8 (16)
O1—C7—H7A 104 (2) C8—C10—H10C 112.1 (19)
O1—C7—H7C 109 (2) C8—C10—H10B 110.3 (17)
O2—S1—N1 111.17 (12) C8—C11—H11C 110.9 (17)
O2—S1—C8 106.35 (11) C8—C11—H11A 109.0 (18)
N1—S1—C8 98.23 (12) C8—C11—H11B 108.7 (17)
C1—O1—C7 118.0 (3) C9—C8—S1 108.1 (2)
C1—C2—H2 119.6 (15) C9—C8—C11 110.9 (3)
C1—C6—H6 122.8 (16) C10—C8—S1 110.65 (19)
C2—C3—N1 118.0 (2) C10—C8—C9 112.5 (3)
C2—C3—C4 119.4 (2) C10—C8—C11 110.8 (2)
C3—N1—S1 120.62 (19) C11—C8—S1 103.4 (2)
C3—N1—H1 117.4 (17) H9C—C9—H9B 110 (3)
C3—C2—C1 120.3 (2) H9C—C9—H9A 108 (3)
C3—C2—H2 120.1 (15) H10A—C10—H10C 113 (3)
C3—C4—H4 117.5 (17) H10A—C10—H10B 108 (2)
C4—C3—N1 122.5 (2) H7B—C7—H7A 110 (3)
C4—C5—C6 122.1 (3) H7B—C7—H7C 105 (3)
C4—C5—H5 118.5 (17) H9B—C9—H9A 103 (3)
C5—C4—C3 119.4 (3) H11C—C11—H11A 114 (3)
C5—C4—H4 123.1 (17) H11C—C11—H11B 108 (3)
C5—C6—C1 118.2 (3) H10C—C10—H10B 103 (2)
C5—C6—H6 118.8 (16) H11A—C11—H11B 106 (2)
C6—C1—C2 120.6 (3) H7A—C7—H7C 119 (3)
C6—C5—H5 119.4 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.80 (2) 2.28 (3) 3.031 (3) 157 (2)
C10—H10A···O2i 1.02 (3) 2.47 (3) 3.487 (4) 171 (2)

Symmetry code: (i) x+1/2, −y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2711).

References

  1. Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009a). Acta Cryst. E65, o2823. [DOI] [PMC free article] [PubMed]
  2. Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009b). Acta Cryst. E65, o2034. [DOI] [PMC free article] [PubMed]
  3. Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2010). Acta Cryst. E66, o109. [DOI] [PMC free article] [PubMed]
  4. Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393. [DOI] [PMC free article] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269–5278. [DOI] [PubMed]
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  9. Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.
  10. Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812006496/rz2711sup1.cif

e-68-0o773-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006496/rz2711Isup4.hkl

e-68-0o773-Isup4.hkl (121.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006496/rz2711Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES