Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o781. doi: 10.1107/S1600536812006289

5,5′-[1,4-Phenyl­enebis(methyl­enesulfanedi­yl)]bis­[1,3,4-thia­diazol-2(3H)-one] dimethyl sulfoxide disolvate

Sung Kwon Kang a,*, Nam Sook Cho a, Siyoung Jang a
PMCID: PMC3297851  PMID: 22412654

Abstract

The asymmetric unit of the title compound, C12H10N4O2S4·2C2H6OS, contains one half of the p-xylene mol­ecule and one dimethyl sulfoxide mol­ecule. The p-xylene mol­ecule is located about a crystallographic inversion centre. In the mol­ecule, the thia­diazole and benzene rings are almost perpendicular to one another, with a dihedral angle of 88.95 (6)°. In the crystal, an N—H⋯O hydrogen bond is observed between the two components. The dimethyl sulfoxide mol­ecule is disordered over two orientations with an occupancy ratio of 0.879 (1):0.121 (1).

Related literature  

For general background to polydentate macrocyclic compounds, see: Dietrich et al. (1993); Vogle (1991). For the synthesis and reactivity of thia­diazole derivatives, see: Cho et al. (1998, 1999, 2001).graphic file with name e-68-0o781-scheme1.jpg

Experimental  

Crystal data  

  • C12H10N4O2S4·2C2H6OS

  • M r = 526.74

  • Triclinic, Inline graphic

  • a = 7.5723 (15) Å

  • b = 8.3258 (17) Å

  • c = 10.346 (2) Å

  • α = 109.70 (4)°

  • β = 95.74 (3)°

  • γ = 91.15 (3)°

  • V = 610.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.18 × 0.17 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.895, T max = 0.923

  • 21342 measured reflections

  • 3039 independent reflections

  • 2124 reflections with I > 2σ(I)

  • R int = 0.083

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.100

  • S = 1.02

  • 3039 reflections

  • 162 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006289/is5071sup1.cif

e-68-0o781-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006289/is5071Isup2.hkl

e-68-0o781-Isup2.hkl (146.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006289/is5071Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O13 0.91 (2) 1.83 (2) 2.742 (3) 175.6 (19)

supplementary crystallographic information

Comment

Polydentate macrocyclic compounds containing heterocyclic rings as subunits possess a variety of interesting properties. Heterocyclic units contain oxygen, nitrogen or sulfur, which provide the coordination sites allowing the heterocycles to form complexes with metals and act as effective hosts for different kinds of molecules (Dietrich et al., 1993; Vogle, 1991). We studied on macrocyclic compounds composed of two 5-mercapto-2,3-dihydro-1,3,4-thiadizol-2-ones and two p-xylenes (Cho et al., 1998, 1999, 2001). The NH of the title compound, α,α'-bis[(4,5-dihydro-5-oxo-1,3,4-thiazol-2-yl)thio]-p-xylene (I) is acidic enough to be alkylated in triethylamine with alkyl halide. The two NH functional groups can afford ring formation through an [2 + 2] alkylation.

The 5-oxo-1,3,4-thiadiazol-2-yl unit is planar, with an r.m.s. deviation of 0.004 Å from the corresponding squares plane defined by the seven constituent atoms. There is a crystallographic inversion center located in the middle of benzene ring. The bond distance of N4—C5 [1.281 (2) Å] is shorter than that of C2—N3 [1.337 (2) Å], which is consistent with double bond character. The thiadiazole and benzene rings are almost perpendicular to each other, with a dihedral angle 88.95 (6)°. The crystal structure is stabilized by the intermolecular N—H···O hydrogen bonds between the p-xylene compound and the dimethyl sulfoxide molecules (Fig. 1 and Table 1).

Experimental

To a solution of α,α'-bis[(5-ethoxy-1,3,4-thiadiazol-2-yl)thio]-p-xylene (Cho et al., 1999, 2001) (2.56 g, 6 mmol) in ethanol (20 ml), was added HBr (47%, 3.5 ml, 30 mmol), in one portion. The mixture was heated under reflux until the above p-xylene compound was disappeared on TLC. The solvent evaporated under reduced pressure to leave a solid residue, which was washed with water. The crude product was recrystallized from EtOH:THF = 3:1. Colorless crystals of (I) were obtained from its DMSO solution by slow evaporation of the solvent at room temperature. Yield 92%, m.p. 208–210°C; Rf: 0.63 (n-hexane: EA = 5: 5); IR (KBr pellet, cm-1): 3120 (NH), 3062, 2950 (CH), 1656 (C═O), 1500, 1200; 1H NMR (DMSO-d6, p.p.m.): 12.95(2H, s, NH), 7.35(4H, s, C6H4), 4.32(4H, s, SCH2); 13C NMR (DMSO-d6, p.p.m.): 171.4 (C=O), 147.8 (C—S), 135.9, 129.2, (C6H4), 36.2 (SCH2).

Refinement

Atom H3 of the NH group was located in a difference Fourier map and refined freely [refined distance: N—H = 0.91 (2) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(carrier C) for aromatic and methylene, and 1.5Ueq(carrier C) for methyl H atoms. DMSO molecule is disordered with an occupancy ratio of 0.879 (1):0.121 (1). For the minor component of the disordered DMSO molecule, bond length restraints of S═O = 1.49 (2) Å and S—C = 1.80 (2) Å were employed.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Intermolecular N—H···O hydrogen bonds are indicated by dashed lines. Only major components of the disordered dimethyl sulfoxide molecule are shown.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing molecules linked by intermolecular N—H···O hydrogen bonds (dashed lines).

Crystal data

C12H10N4O2S4·2C2H6OS Z = 1
Mr = 526.74 F(000) = 274
Triclinic, P1 Dx = 1.434 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5723 (15) Å Cell parameters from 5678 reflections
b = 8.3258 (17) Å θ = 2.6–25.2°
c = 10.346 (2) Å µ = 0.59 mm1
α = 109.70 (4)° T = 296 K
β = 95.74 (3)° Block, colourless
γ = 91.15 (3)° 0.18 × 0.17 × 0.12 mm
V = 610.0 (2) Å3

Data collection

Bruker APEXII CCD diffractometer 2124 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.083
φ and ω scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −10→10
Tmin = 0.895, Tmax = 0.923 k = −11→11
21342 measured reflections l = −13→13
3039 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0506P)2] where P = (Fo2 + 2Fc2)/3
3039 reflections (Δ/σ)max < 0.001
162 parameters Δρmax = 0.16 e Å3
3 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.76776 (6) 0.37928 (6) 0.42321 (5) 0.07516 (18)
C2 0.7758 (2) 0.3744 (2) 0.59474 (19) 0.0668 (4)
N3 0.62432 (19) 0.2937 (2) 0.60130 (16) 0.0688 (4)
H3 0.589 (3) 0.282 (3) 0.679 (2) 0.090 (7)*
N4 0.50062 (17) 0.23800 (17) 0.48623 (14) 0.0611 (3)
C5 0.55873 (19) 0.27358 (19) 0.38640 (17) 0.0549 (4)
O6 0.89774 (16) 0.43193 (18) 0.68683 (15) 0.0946 (5)
S7 0.44211 (6) 0.22149 (6) 0.22259 (5) 0.06970 (16)
C8 0.2421 (2) 0.1210 (2) 0.25284 (16) 0.0598 (4)
H8A 0.2729 0.0257 0.283 0.072*
H8B 0.1848 0.2027 0.3249 0.072*
C9 0.11735 (19) 0.05870 (19) 0.12143 (15) 0.0516 (3)
C10 −0.0134 (2) 0.1597 (2) 0.09349 (16) 0.0610 (4)
H10 −0.0228 0.2687 0.1563 0.073*
C11 0.1302 (2) −0.1018 (2) 0.02588 (16) 0.0603 (4)
H11 0.2181 −0.1713 0.0421 0.072*
S12 0.32235 (7) 0.21416 (7) 0.85488 (5) 0.0693 (2) 0.8786 (14)
O13 0.5091 (2) 0.2414 (3) 0.8277 (2) 0.0771 (6) 0.8786 (14)
C14 0.1951 (5) 0.1372 (4) 0.6870 (4) 0.0807 (9) 0.8786 (14)
H14A 0.2232 0.0218 0.639 0.121* 0.8786 (14)
H14B 0.2238 0.2084 0.635 0.121* 0.8786 (14)
H14C 0.0706 0.1402 0.6975 0.121* 0.8786 (14)
C15 0.2328 (6) 0.4158 (6) 0.9137 (4) 0.0964 (12) 0.8786 (14)
H15A 0.2907 0.4803 1.0039 0.145* 0.8786 (14)
H15B 0.1078 0.4017 0.9183 0.145* 0.8786 (14)
H15C 0.2511 0.4757 0.8509 0.145* 0.8786 (14)
S12A 0.3220 (5) 0.3284 (5) 0.7826 (4) 0.0717 (14) 0.1214 (14)
O13A 0.5108 (17) 0.3036 (17) 0.8234 (16) 0.057 (4)* 0.1214 (14)
C14A 0.209 (5) 0.126 (3) 0.729 (3) 0.093 (11)* 0.1214 (14)
H14D 0.29 0.0394 0.6939 0.14* 0.1214 (14)
H14E 0.1146 0.1194 0.6573 0.14* 0.1214 (14)
H14F 0.1595 0.1102 0.8058 0.14* 0.1214 (14)
C15A 0.250 (5) 0.410 (5) 0.952 (2) 0.087 (10)* 0.1214 (14)
H15D 0.3501 0.4642 1.0183 0.13* 0.1214 (14)
H15E 0.1998 0.3176 0.9746 0.13* 0.1214 (14)
H15F 0.1623 0.4918 0.953 0.13* 0.1214 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0514 (3) 0.0787 (3) 0.0898 (4) −0.0150 (2) −0.0004 (2) 0.0249 (2)
C2 0.0489 (9) 0.0614 (10) 0.0737 (11) −0.0010 (7) −0.0108 (8) 0.0069 (8)
N3 0.0541 (8) 0.0853 (10) 0.0560 (8) −0.0119 (7) −0.0137 (7) 0.0162 (7)
N4 0.0495 (7) 0.0731 (9) 0.0527 (7) −0.0090 (6) −0.0092 (6) 0.0159 (6)
C5 0.0436 (8) 0.0553 (8) 0.0607 (9) −0.0018 (6) −0.0025 (7) 0.0156 (7)
O6 0.0600 (8) 0.0931 (10) 0.0981 (10) −0.0088 (7) −0.0304 (7) 0.0017 (8)
S7 0.0588 (3) 0.0926 (3) 0.0573 (3) −0.0129 (2) −0.00617 (19) 0.0296 (2)
C8 0.0500 (9) 0.0749 (10) 0.0494 (8) −0.0074 (7) −0.0062 (7) 0.0184 (7)
C9 0.0442 (8) 0.0595 (9) 0.0460 (8) −0.0028 (6) −0.0026 (6) 0.0139 (7)
C10 0.0565 (9) 0.0579 (9) 0.0562 (9) 0.0060 (7) −0.0038 (7) 0.0062 (7)
C11 0.0512 (9) 0.0627 (10) 0.0600 (9) 0.0109 (7) −0.0066 (7) 0.0149 (7)
S12 0.0666 (3) 0.0796 (4) 0.0724 (4) 0.0135 (2) 0.0099 (2) 0.0388 (3)
O13 0.0570 (9) 0.1063 (17) 0.0751 (10) 0.0135 (10) 0.0017 (7) 0.0413 (12)
C14 0.0665 (16) 0.0774 (18) 0.085 (2) −0.0001 (11) −0.0046 (15) 0.0146 (15)
C15 0.0810 (19) 0.098 (2) 0.088 (2) 0.0245 (14) −0.0073 (19) 0.007 (2)
S12A 0.064 (2) 0.092 (3) 0.070 (2) 0.0013 (18) −0.0017 (17) 0.045 (2)

Geometric parameters (Å, º)

S1—C5 1.7385 (16) S12—O13 1.4964 (19)
S1—C2 1.784 (2) S12—C15 1.757 (4)
C2—O6 1.220 (2) S12—C14 1.802 (4)
C2—N3 1.337 (2) C14—H14A 0.96
N3—N4 1.3772 (18) C14—H14B 0.96
N3—H3 0.91 (2) C14—H14C 0.96
N4—C5 1.281 (2) C15—H15A 0.96
C5—S7 1.7406 (17) C15—H15B 0.96
S7—C8 1.8202 (17) C15—H15C 0.96
C8—C9 1.502 (2) S12A—O13A 1.488 (13)
C8—H8A 0.97 S12A—C14A 1.758 (18)
C8—H8B 0.97 S12A—C15A 1.796 (18)
C9—C11 1.380 (2) C14A—H14D 0.96
C9—C10 1.382 (2) C14A—H14E 0.96
C10—C11i 1.379 (2) C14A—H14F 0.96
C10—H10 0.93 C15A—H15D 0.96
C11—C10i 1.379 (2) C15A—H15E 0.96
C11—H11 0.93 C15A—H15F 0.96
C5—S1—C2 88.75 (8) C15—S12—C14 97.27 (19)
O6—C2—N3 127.16 (19) S12—C14—H14A 109.5
O6—C2—S1 126.18 (16) S12—C14—H14B 109.5
N3—C2—S1 106.66 (12) H14A—C14—H14B 109.5
C2—N3—N4 119.02 (16) S12—C14—H14C 109.5
C2—N3—H3 125.3 (14) H14A—C14—H14C 109.5
N4—N3—H3 115.3 (14) H14B—C14—H14C 109.5
C5—N4—N3 109.97 (14) S12—C15—H15A 109.5
N4—C5—S1 115.59 (12) S12—C15—H15B 109.5
N4—C5—S7 123.92 (12) H15A—C15—H15B 109.5
S1—C5—S7 120.48 (10) S12—C15—H15C 109.5
C5—S7—C8 98.72 (8) H15A—C15—H15C 109.5
C9—C8—S7 109.26 (12) H15B—C15—H15C 109.5
C9—C8—H8A 109.8 O13A—S12A—C14A 106.7 (13)
S7—C8—H8A 109.8 O13A—S12A—C15A 98.7 (13)
C9—C8—H8B 109.8 C14A—S12A—C15A 97.6 (18)
S7—C8—H8B 109.8 S12A—C14A—H14D 109.5
H8A—C8—H8B 108.3 S12A—C14A—H14E 109.5
C11—C9—C10 118.39 (13) H14D—C14A—H14E 109.5
C11—C9—C8 120.59 (14) S12A—C14A—H14F 109.5
C10—C9—C8 121.02 (14) H14D—C14A—H14F 109.5
C11i—C10—C9 121.18 (14) H14E—C14A—H14F 109.5
C11i—C10—H10 119.4 S12A—C15A—H15D 109.5
C9—C10—H10 119.4 S12A—C15A—H15E 109.5
C10i—C11—C9 120.43 (14) H15D—C15A—H15E 109.5
C10i—C11—H11 119.8 S12A—C15A—H15F 109.5
C9—C11—H11 119.8 H15D—C15A—H15F 109.5
O13—S12—C15 107.4 (2) H15E—C15A—H15F 109.5
O13—S12—C14 105.18 (15)

Symmetry code: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O13 0.91 (2) 1.83 (2) 2.742 (3) 175.6 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5071).

References

  1. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cho, N. S., Hong, S. I., Park, Y. S. & Suh, I. H. (2001). Bull. Korean Chem. Soc. 22, 1280–1282.
  3. Cho, N. S., Park, C. K., Kim, H. S., Choi, E. S. & Kang, S. K. (1998). Bull. Korean Chem. Soc. 19, 103–106.
  4. Cho, N. S., Park, C. K., Kim, H. S., Oh, J. G., Suh, I. H. & Oh, M. R. (1999). Heterocycles, 51, 2739–2746.
  5. Dietrich, B., Viout, P. & Lehn, J. M. (1993). In Macrocyclic Chemistry: Aspects of Organic and Inorganic Supramolecular Chemistry Weinheim: VCH.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Vogle, F. (1991). In Supramolecular Chemistry Chichester: Wiley.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006289/is5071sup1.cif

e-68-0o781-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006289/is5071Isup2.hkl

e-68-0o781-Isup2.hkl (146.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006289/is5071Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES