Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 24;68(Pt 3):o815. doi: 10.1107/S1600536812006940

(2E)-2-(4-Meth­oxy­benzyl­idene)-2,3-di­hydro-1H-inden-1-one

Abdullah M Asiri a,b,, Hassan M Faidallah b, Khulud F Al-Nemari a,b, Seik Weng Ng c, Edward R T Tiekink c,*
PMCID: PMC3297877  PMID: 22412680

Abstract

In the title compound, C17H14O2, the indan-1-one system is almost planar (r.m.s. deviation = 0.007 Å) and the benzene ring is twisted out of its plane by 8.15 (6)°. The conformation about the C=C double bond [1.348 (2) Å] is E. Helical supra­molecular chains along [010] feature in the crystal packing; these are sustained by C—H⋯O hydrogen bonds and π–π inter­actions between translationally related indan-1-one systems [centroid–centroid distance = 3.7970 (10) Å].

Related literature  

For related cyclic ketone structures, see: Asiri, Faidallah & Ng (2011); Asiri, Al-Youbi et al. (2011).graphic file with name e-68-0o815-scheme1.jpg

Experimental  

Crystal data  

  • C17H14O2

  • M r = 250.28

  • Monoclinic, Inline graphic

  • a = 15.1177 (10) Å

  • b = 3.9322 (3) Å

  • c = 20.7072 (13) Å

  • β = 94.615 (6)°

  • V = 1226.97 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.03 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.974, T max = 0.997

  • 4873 measured reflections

  • 2792 independent reflections

  • 2131 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.126

  • S = 1.03

  • 2792 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006940/hb6631sup1.cif

e-68-0o815-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006940/hb6631Isup2.hkl

e-68-0o815-Isup2.hkl (137.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006940/hb6631Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.95 2.58 3.5327 (19) 175

Symmetry code: (i) Inline graphic.

Acknowledgments

King Abdulaziz University is thanked for support. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The title compound, 2-(4-methoxybenzylidene)indan-1-one (I), was investigated in connection with recent structure determinations of related cyclic ketone derivatives (Asiri, Faidallah & Ng, 2011; Asiri, Al-Youbi et al., 2011).

The nine non-hydrogen atoms of the inden-1-one system in (I), Fig. 1, are co-planar with a r.m.s. deviation = 0.007 Å. The dihedral angle between the inden-1-one system and benzene ring is 8.15 (6)°, and the methoxy substituent is co-planar with the benzene ring to which it is connected [the C17—O2—C14—C13 torsion angle = -0.6 (2)°]. The configuration about the C9═C10 double bond [1.348 (2) Å] is E.

In the crystal packing, molecules aggregate along the 21 axis via C—H···O, Table 1, and π(C1,C2,C7—C9)···π(C2–C7)i interactions between symmetry related rings of the inden-1-one system [centroid···centroid distance = 3.7970 (10) °, angle between rings = 0.51 (8)° for i: x, -1 + y, z]. There are no specific interactions between the supramolecular chains, Fig. 3.

Experimental

A solution of the p-anisaldehyde (1.36 g, 0.01 mol) in ethanol (20 ml) was added to a stirred solution of 1-indanone (1.3 g,0.01 mol) in ethanolic KOH (20%, 20 ml), and stirring was maintained at room temperature for 6 h. The reaction mixture was then poured onto water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from its ethanol solution as light-brown plates, M.pt.: 491–493 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. Two reflections, i.e. (1 0 2) and (0 0 14), were omitted owing to poor agreement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

A view of the helical supramolecular chain along [010] in (I). The C—H···O and π–π interactions are shown as orange and purple dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents for (I), highlighting the stacking of chains.

Crystal data

C17H14O2 F(000) = 528
Mr = 250.28 Dx = 1.355 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1476 reflections
a = 15.1177 (10) Å θ = 2.3–27.5°
b = 3.9322 (3) Å µ = 0.09 mm1
c = 20.7072 (13) Å T = 100 K
β = 94.615 (6)° Plate, light brown
V = 1226.97 (15) Å3 0.30 × 0.30 × 0.03 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2792 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2131 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.7°
ω scan h = −14→19
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −3→5
Tmin = 0.974, Tmax = 0.997 l = −26→22
4873 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.054P)2 + 0.3168P] where P = (Fo2 + 2Fc2)/3
2792 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.25 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.21241 (7) 0.4870 (3) 0.24618 (5) 0.0249 (3)
O2 0.73625 (7) 0.5812 (3) 0.43081 (5) 0.0233 (3)
C1 0.22115 (10) 0.6064 (4) 0.30095 (8) 0.0186 (4)
C2 0.15106 (10) 0.7692 (4) 0.33660 (7) 0.0184 (4)
C3 0.06204 (10) 0.8185 (4) 0.31668 (8) 0.0216 (4)
H3 0.0384 0.7449 0.2751 0.026*
C4 0.00833 (11) 0.9776 (4) 0.35877 (8) 0.0227 (4)
H4 −0.0526 1.0155 0.3460 0.027*
C5 0.04381 (11) 1.0821 (5) 0.42005 (8) 0.0240 (4)
H5 0.0063 1.1894 0.4486 0.029*
C6 0.13295 (11) 1.0321 (4) 0.44003 (8) 0.0215 (4)
H6 0.1565 1.1042 0.4817 0.026*
C7 0.18690 (10) 0.8739 (4) 0.39758 (8) 0.0187 (4)
C8 0.28497 (10) 0.7948 (4) 0.40744 (7) 0.0193 (4)
H8A 0.2978 0.6405 0.4448 0.023*
H8B 0.3203 1.0054 0.4146 0.023*
C9 0.30473 (10) 0.6238 (4) 0.34465 (7) 0.0181 (4)
C10 0.38144 (10) 0.5031 (4) 0.32473 (7) 0.0182 (4)
H10 0.3758 0.3929 0.2838 0.022*
C11 0.47172 (10) 0.5132 (4) 0.35550 (7) 0.0183 (4)
C12 0.53982 (10) 0.3750 (4) 0.32146 (8) 0.0193 (4)
H12 0.5244 0.2673 0.2811 0.023*
C13 0.62868 (10) 0.3885 (4) 0.34408 (8) 0.0200 (4)
H13 0.6731 0.2933 0.3196 0.024*
C14 0.65108 (10) 0.5448 (4) 0.40343 (8) 0.0189 (4)
C15 0.58486 (10) 0.6782 (4) 0.43933 (8) 0.0207 (4)
H15 0.6005 0.7811 0.4802 0.025*
C16 0.49691 (10) 0.6619 (4) 0.41602 (7) 0.0197 (4)
H16 0.4526 0.7524 0.4412 0.024*
C17 0.80559 (10) 0.4433 (5) 0.39500 (8) 0.0242 (4)
H17 0.8629 0.4734 0.4200 0.036*
H17B 0.8063 0.5621 0.3534 0.036*
H17C 0.7948 0.2005 0.3872 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0235 (6) 0.0315 (7) 0.0198 (6) −0.0012 (5) 0.0025 (5) −0.0041 (5)
O2 0.0152 (6) 0.0311 (7) 0.0235 (6) 0.0017 (5) −0.0001 (4) −0.0045 (5)
C1 0.0193 (8) 0.0181 (8) 0.0187 (8) −0.0016 (7) 0.0037 (6) 0.0015 (7)
C2 0.0189 (8) 0.0186 (9) 0.0181 (8) −0.0012 (7) 0.0033 (6) 0.0029 (7)
C3 0.0200 (8) 0.0225 (9) 0.0221 (8) −0.0033 (7) 0.0009 (6) 0.0017 (7)
C4 0.0171 (8) 0.0248 (9) 0.0263 (8) 0.0013 (7) 0.0023 (6) 0.0050 (8)
C5 0.0221 (8) 0.0261 (9) 0.0247 (9) 0.0028 (8) 0.0077 (7) 0.0027 (8)
C6 0.0235 (8) 0.0215 (9) 0.0195 (8) 0.0010 (7) 0.0023 (6) 0.0006 (7)
C7 0.0189 (8) 0.0169 (8) 0.0202 (8) −0.0006 (7) 0.0022 (6) 0.0035 (7)
C8 0.0188 (8) 0.0207 (9) 0.0183 (8) 0.0001 (7) 0.0010 (6) −0.0001 (7)
C9 0.0196 (8) 0.0167 (8) 0.0183 (8) −0.0011 (7) 0.0029 (6) 0.0015 (7)
C10 0.0217 (8) 0.0174 (8) 0.0158 (7) −0.0017 (7) 0.0029 (6) 0.0007 (7)
C11 0.0192 (8) 0.0166 (8) 0.0192 (7) 0.0008 (7) 0.0032 (6) 0.0028 (7)
C12 0.0224 (8) 0.0188 (8) 0.0169 (7) −0.0004 (7) 0.0019 (6) −0.0008 (7)
C13 0.0189 (8) 0.0214 (9) 0.0203 (8) 0.0028 (7) 0.0051 (6) 0.0013 (7)
C14 0.0168 (8) 0.0196 (8) 0.0202 (8) 0.0003 (7) 0.0008 (6) 0.0034 (7)
C15 0.0237 (8) 0.0222 (9) 0.0160 (7) 0.0029 (7) 0.0014 (6) −0.0005 (7)
C16 0.0193 (8) 0.0215 (9) 0.0187 (8) 0.0031 (7) 0.0046 (6) 0.0013 (7)
C17 0.0149 (8) 0.0292 (10) 0.0285 (9) 0.0025 (7) 0.0022 (6) −0.0025 (8)

Geometric parameters (Å, º)

O1—C1 1.2249 (19) C8—H8B 0.9900
O2—C14 1.3721 (19) C9—C10 1.348 (2)
O2—C17 1.4379 (18) C10—C11 1.460 (2)
C1—C2 1.484 (2) C10—H10 0.9500
C1—C9 1.495 (2) C11—C12 1.403 (2)
C2—C3 1.389 (2) C11—C16 1.407 (2)
C2—C7 1.396 (2) C12—C13 1.388 (2)
C3—C4 1.387 (2) C12—H12 0.9500
C3—H3 0.9500 C13—C14 1.391 (2)
C4—C5 1.399 (2) C13—H13 0.9500
C4—H4 0.9500 C14—C15 1.396 (2)
C5—C6 1.392 (2) C15—C16 1.379 (2)
C5—H5 0.9500 C15—H15 0.9500
C6—C7 1.393 (2) C16—H16 0.9500
C6—H6 0.9500 C17—H17 0.9800
C7—C8 1.512 (2) C17—H17B 0.9800
C8—C9 1.515 (2) C17—H17C 0.9800
C8—H8A 0.9900
C14—O2—C17 116.51 (12) C10—C9—C8 130.76 (14)
O1—C1—C2 126.71 (14) C1—C9—C8 108.93 (13)
O1—C1—C9 126.93 (14) C9—C10—C11 130.85 (15)
C2—C1—C9 106.35 (13) C9—C10—H10 114.6
C3—C2—C7 121.58 (15) C11—C10—H10 114.6
C3—C2—C1 128.75 (15) C12—C11—C16 116.83 (14)
C7—C2—C1 109.67 (14) C12—C11—C10 117.92 (14)
C4—C3—C2 118.60 (15) C16—C11—C10 125.20 (14)
C4—C3—H3 120.7 C13—C12—C11 123.04 (15)
C2—C3—H3 120.7 C13—C12—H12 118.5
C3—C4—C5 120.09 (15) C11—C12—H12 118.5
C3—C4—H4 120.0 C12—C13—C14 118.37 (14)
C5—C4—H4 120.0 C12—C13—H13 120.8
C6—C5—C4 121.30 (15) C14—C13—H13 120.8
C6—C5—H5 119.3 O2—C14—C13 124.38 (14)
C4—C5—H5 119.3 O2—C14—C15 115.46 (14)
C5—C6—C7 118.54 (15) C13—C14—C15 120.16 (14)
C5—C6—H6 120.7 C16—C15—C14 120.57 (15)
C7—C6—H6 120.7 C16—C15—H15 119.7
C6—C7—C2 119.89 (15) C14—C15—H15 119.7
C6—C7—C8 128.61 (15) C15—C16—C11 121.01 (14)
C2—C7—C8 111.49 (14) C15—C16—H16 119.5
C7—C8—C9 103.55 (13) C11—C16—H16 119.5
C7—C8—H8A 111.1 O2—C17—H17 109.5
C9—C8—H8A 111.1 O2—C17—H17B 109.5
C7—C8—H8B 111.1 H17—C17—H17B 109.5
C9—C8—H8B 111.1 O2—C17—H17C 109.5
H8A—C8—H8B 109.0 H17—C17—H17C 109.5
C10—C9—C1 120.30 (14) H17B—C17—H17C 109.5
O1—C1—C2—C3 0.6 (3) C2—C1—C9—C8 0.59 (18)
C9—C1—C2—C3 179.53 (16) C7—C8—C9—C10 178.56 (17)
O1—C1—C2—C7 −179.84 (16) C7—C8—C9—C1 −0.04 (17)
C9—C1—C2—C7 −0.96 (18) C1—C9—C10—C11 174.72 (16)
C7—C2—C3—C4 0.3 (3) C8—C9—C10—C11 −3.7 (3)
C1—C2—C3—C4 179.78 (16) C9—C10—C11—C12 −177.64 (17)
C2—C3—C4—C5 −0.5 (3) C9—C10—C11—C16 0.0 (3)
C3—C4—C5—C6 0.4 (3) C16—C11—C12—C13 −1.8 (2)
C4—C5—C6—C7 −0.1 (3) C10—C11—C12—C13 176.01 (15)
C5—C6—C7—C2 −0.1 (2) C11—C12—C13—C14 0.3 (3)
C5—C6—C7—C8 179.26 (16) C17—O2—C14—C13 −0.6 (2)
C3—C2—C7—C6 0.0 (3) C17—O2—C14—C15 179.49 (15)
C1—C2—C7—C6 −179.54 (15) C12—C13—C14—O2 −178.74 (15)
C3—C2—C7—C8 −179.47 (15) C12—C13—C14—C15 1.1 (2)
C1—C2—C7—C8 0.97 (19) O2—C14—C15—C16 178.80 (15)
C6—C7—C8—C9 180.00 (16) C13—C14—C15—C16 −1.1 (3)
C2—C7—C8—C9 −0.57 (18) C14—C15—C16—C11 −0.4 (3)
O1—C1—C9—C10 0.7 (3) C12—C11—C16—C15 1.8 (2)
C2—C1—C9—C10 −178.19 (15) C10—C11—C16—C15 −175.80 (16)
O1—C1—C9—C8 179.47 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···O1i 0.95 2.58 3.5327 (19) 175

Symmetry code: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6631).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2443. [DOI] [PMC free article] [PubMed]
  3. Asiri, A. M., Faidallah, H. M. & Ng, S. W. (2011). Acta Cryst. E67, o1611. [DOI] [PMC free article] [PubMed]
  4. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  5. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006940/hb6631sup1.cif

e-68-0o815-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006940/hb6631Isup2.hkl

e-68-0o815-Isup2.hkl (137.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006940/hb6631Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES