Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 24;68(Pt 3):o835. doi: 10.1107/S1600536812007623

N-(3-Chloro-4-methyl­phen­yl)succinamic acid

U Chaithanya a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3297894  PMID: 22412697

Abstract

In the crystal structure of the title compound, C11H12ClNO3, the asymmetric unit contains two independent mol­ecules. The N—H bond in the amide segment is anti to the meta-Cl atom in the benzene ring, in both molecules. The amide and carboxyl C=O bonds are also anti to each other and anti to the H atoms on the adjacent –CH2 groups. Furthermore, the C=O and O—H bonds of the acid group are in syn positions with respect to each other. The dihedral angles between the benzene ring and the amide group are 40.6 (2) and 44.9 (3)° in the two independent molecules. In the crystal, mol­ecules are packed into sheets parallel to the (11-3) plane through O—H⋯O and N—H⋯O hydrogen bonds.

Related literature  

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000); Chaithanya et al. (2012). For N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007). For N-chloro­aryl­amides, see: Gowda et al. (2003); Jyothi & Gowda (2004). For N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006).graphic file with name e-68-0o835-scheme1.jpg

Experimental  

Crystal data  

  • C11H12ClNO3

  • M r = 241.67

  • Triclinic, Inline graphic

  • a = 6.8788 (9) Å

  • b = 7.9713 (9) Å

  • c = 21.119 (3) Å

  • α = 86.76 (1)°

  • β = 86.48 (1)°

  • γ = 79.45 (1)°

  • V = 1135.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.42 × 0.14 × 0.08 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.875, T max = 0.974

  • 6890 measured reflections

  • 4066 independent reflections

  • 2649 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.083

  • wR(F 2) = 0.159

  • S = 1.26

  • 4066 reflections

  • 303 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007623/bt5820sup1.cif

e-68-0o835-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007623/bt5820Isup2.hkl

e-68-0o835-Isup2.hkl (199.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007623/bt5820Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.85 (2) 2.05 (2) 2.882 (5) 165 (5)
O3—H3O⋯O2ii 0.83 (2) 1.83 (2) 2.654 (5) 173 (7)
N2—H2N⋯O1iii 0.84 (2) 2.07 (2) 2.891 (5) 165 (5)
O6—H6O⋯O5iv 0.83 (2) 1.90 (3) 2.703 (5) 164 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a UGC-BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Chaithanya et al., 2012), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-chloroarylsulfonamides (Gowda et al., 2003; Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(3-Chloro-4-methylphenyl)succinamic acid has been determined (Fig. 1). The asymmetric unit of the structure contains two independent molecules. The conformations of the N—H bonds in the amide segments are anti to the meta–chloro atoms in the benzene rings of both the molecules, in contrast to the syn conformation observed between the N—H bond and ortho–chloro atom in N-(2-Chloro-4-methylphenyl)-succinamic acid (I) (Chaithanya et al., 2012).

Further, the conformations of the amide oxygen and the carboxyl oxygen of the acid segments are anti to each other and both are anti to the H atoms on the adjacent –CH2 groups.

The C═O and O—H bonds of the acid groups are in syn position to each other, similar to that observed in (I).

The dihedral angles between the phenyl ring and the amide group in the two independent molecules are 40.58 (22)° and 44.93 (27)°, compared to the value of 48.39 (12)° in (I).

In the structure, the pairs of O—H···O and N—H···O intermolecular hydrogen bonds pack the molecules into infinite chains (Table 1, Fig.2).

Experimental

The solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of 3-chloro,4-methylaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3-chloro-4-methyl- aniline. The resultant title compound was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

The H atoms of the NH group and the OH group were located in a difference map and later restrained to N—H = 0.86 (2) Å and O—H = 0.82 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C11H12ClNO3 Z = 4
Mr = 241.67 F(000) = 504
Triclinic, P1 Dx = 1.414 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8788 (9) Å Cell parameters from 1965 reflections
b = 7.9713 (9) Å θ = 2.6–27.8°
c = 21.119 (3) Å µ = 0.33 mm1
α = 86.76 (1)° T = 293 K
β = 86.48 (1)° Needle, colourless
γ = 79.45 (1)° 0.42 × 0.14 × 0.08 mm
V = 1135.1 (3) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 4066 independent reflections
Radiation source: fine-focus sealed tube 2649 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Rotation method data acquisition using ω and phi scans θmax = 25.3°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −8→7
Tmin = 0.875, Tmax = 0.974 k = −9→5
6890 measured reflections l = −25→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.0164P)2 + 2.1147P] where P = (Fo2 + 2Fc2)/3
4066 reflections (Δ/σ)max < 0.001
303 parameters Δρmax = 0.23 e Å3
4 restraints Δρmin = −0.29 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9701 (7) 0.4350 (5) 0.2737 (2) 0.0373 (11)
C2 0.8270 (7) 0.4875 (6) 0.3209 (2) 0.0395 (11)
H2 0.6996 0.4647 0.3192 0.047*
C3 0.8765 (7) 0.5746 (6) 0.3707 (2) 0.0406 (11)
C4 1.0621 (8) 0.6124 (6) 0.3758 (2) 0.0462 (12)
C5 1.2006 (7) 0.5579 (6) 0.3278 (2) 0.0508 (13)
H5 1.3280 0.5803 0.3297 0.061*
C6 1.1575 (7) 0.4713 (6) 0.2771 (2) 0.0492 (13)
H6 1.2545 0.4376 0.2454 0.059*
C7 0.7569 (7) 0.3702 (6) 0.1926 (2) 0.0442 (12)
C8 0.7444 (8) 0.2452 (6) 0.1422 (2) 0.0520 (14)
H8A 0.8542 0.2459 0.1111 0.062*
H8B 0.7571 0.1310 0.1618 0.062*
C9 0.5540 (8) 0.2863 (7) 0.1088 (3) 0.0643 (16)
H9A 0.4443 0.2925 0.1402 0.077*
H9B 0.5453 0.3979 0.0872 0.077*
C10 0.5339 (9) 0.1589 (7) 0.0616 (3) 0.0625 (16)
C11 1.1143 (8) 0.7015 (7) 0.4315 (2) 0.0641 (16)
H11A 1.0990 0.6329 0.4698 0.077*
H11B 1.0282 0.8103 0.4347 0.077*
H11C 1.2491 0.7180 0.4258 0.077*
N1 0.9276 (6) 0.3407 (5) 0.22252 (18) 0.0444 (10)
H1N 1.019 (5) 0.261 (4) 0.210 (2) 0.053*
O1 0.6196 (5) 0.4867 (4) 0.20492 (16) 0.0577 (10)
O2 0.6511 (6) 0.0290 (5) 0.0539 (2) 0.0819 (14)
O3 0.3768 (7) 0.2020 (6) 0.0292 (2) 0.1039 (18)
H3O 0.370 (11) 0.124 (6) 0.006 (3) 0.125*
Cl1 0.6908 (2) 0.63733 (18) 0.42917 (6) 0.0627 (4)
C12 0.5122 (7) 1.0684 (5) 0.7315 (2) 0.0391 (11)
C13 0.6607 (7) 0.9993 (6) 0.6890 (2) 0.0422 (12)
H13 0.7919 1.0053 0.6953 0.051*
C14 0.6131 (7) 0.9208 (5) 0.6365 (2) 0.0397 (11)
C15 0.4223 (7) 0.9079 (6) 0.6246 (2) 0.0415 (11)
C16 0.2766 (7) 0.9777 (7) 0.6688 (2) 0.0534 (14)
H16 0.1457 0.9702 0.6628 0.064*
C17 0.3185 (7) 1.0581 (6) 0.7213 (2) 0.0473 (12)
H17 0.2168 1.1048 0.7497 0.057*
C18 0.7041 (8) 1.1042 (7) 0.8223 (2) 0.0573 (15)
C19 0.7225 (8) 1.2230 (7) 0.8742 (3) 0.0707 (18)
H19A 0.6436 1.3344 0.8645 0.085*
H19B 0.6696 1.1790 0.9141 0.085*
C20 0.9289 (9) 1.2424 (8) 0.8816 (3) 0.0722 (18)
H20A 0.9796 1.2907 0.8422 0.087*
H20B 1.0086 1.1303 0.8893 0.087*
C21 0.9521 (10) 1.3530 (7) 0.9343 (3) 0.0619 (16)
C22 0.3714 (8) 0.8265 (7) 0.5666 (2) 0.0644 (16)
H22A 0.4427 0.7112 0.5655 0.077*
H22B 0.4072 0.8903 0.5292 0.077*
H22C 0.2317 0.8261 0.5682 0.077*
N2 0.5543 (6) 1.1566 (5) 0.78445 (19) 0.0485 (11)
H2N 0.485 (6) 1.254 (4) 0.790 (2) 0.058*
O4 0.8183 (7) 0.9688 (5) 0.8168 (2) 0.0951 (17)
O5 0.8321 (7) 1.3876 (6) 0.9774 (2) 0.0946 (16)
O6 1.1205 (9) 1.4050 (7) 0.9300 (2) 0.1004 (16)
H6O 1.122 (11) 1.457 (8) 0.963 (2) 0.121*
Cl2 0.8053 (2) 0.84014 (18) 0.58273 (6) 0.0599 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.038 (3) 0.036 (3) 0.037 (2) 0.001 (2) −0.008 (2) −0.010 (2)
C2 0.038 (3) 0.042 (3) 0.040 (3) −0.007 (2) −0.007 (2) −0.009 (2)
C3 0.044 (3) 0.038 (3) 0.038 (3) 0.001 (2) −0.005 (2) −0.011 (2)
C4 0.056 (3) 0.040 (3) 0.045 (3) −0.009 (2) −0.013 (2) −0.006 (2)
C5 0.040 (3) 0.056 (3) 0.059 (3) −0.012 (2) −0.009 (2) −0.012 (3)
C6 0.046 (3) 0.056 (3) 0.044 (3) 0.000 (2) −0.001 (2) −0.015 (2)
C7 0.051 (3) 0.040 (3) 0.040 (3) −0.001 (2) −0.006 (2) −0.014 (2)
C8 0.068 (4) 0.038 (3) 0.048 (3) 0.004 (2) −0.020 (3) −0.019 (2)
C9 0.057 (4) 0.069 (4) 0.068 (4) 0.001 (3) −0.020 (3) −0.037 (3)
C10 0.063 (4) 0.064 (4) 0.063 (4) −0.002 (3) −0.020 (3) −0.032 (3)
C11 0.068 (4) 0.072 (4) 0.059 (3) −0.017 (3) −0.017 (3) −0.025 (3)
N1 0.044 (3) 0.042 (2) 0.046 (2) 0.0057 (19) −0.0109 (19) −0.0200 (19)
O1 0.053 (2) 0.055 (2) 0.061 (2) 0.0148 (18) −0.0208 (17) −0.0312 (18)
O2 0.081 (3) 0.067 (3) 0.097 (3) 0.016 (2) −0.042 (2) −0.051 (2)
O3 0.088 (3) 0.095 (3) 0.126 (4) 0.029 (3) −0.065 (3) −0.073 (3)
Cl1 0.0659 (9) 0.0708 (9) 0.0511 (8) −0.0068 (7) 0.0061 (6) −0.0275 (7)
C12 0.047 (3) 0.030 (2) 0.041 (3) −0.002 (2) −0.009 (2) −0.010 (2)
C13 0.030 (3) 0.049 (3) 0.048 (3) −0.002 (2) −0.006 (2) −0.014 (2)
C14 0.041 (3) 0.034 (3) 0.043 (3) −0.001 (2) −0.003 (2) −0.007 (2)
C15 0.041 (3) 0.044 (3) 0.042 (3) −0.012 (2) −0.004 (2) −0.005 (2)
C16 0.034 (3) 0.072 (4) 0.057 (3) −0.014 (3) −0.008 (2) −0.010 (3)
C17 0.038 (3) 0.055 (3) 0.048 (3) −0.003 (2) −0.001 (2) −0.011 (2)
C18 0.059 (4) 0.055 (3) 0.057 (3) 0.006 (3) −0.017 (3) −0.028 (3)
C19 0.068 (4) 0.072 (4) 0.070 (4) 0.010 (3) −0.024 (3) −0.045 (3)
C20 0.082 (5) 0.066 (4) 0.071 (4) −0.006 (3) −0.019 (3) −0.040 (3)
C21 0.073 (4) 0.061 (4) 0.055 (4) −0.011 (3) −0.021 (3) −0.019 (3)
C22 0.066 (4) 0.082 (4) 0.054 (3) −0.029 (3) −0.010 (3) −0.017 (3)
N2 0.049 (3) 0.041 (2) 0.053 (2) 0.0089 (19) −0.011 (2) −0.024 (2)
O4 0.105 (3) 0.072 (3) 0.097 (3) 0.048 (3) −0.062 (3) −0.058 (2)
O5 0.109 (4) 0.111 (4) 0.077 (3) −0.045 (3) 0.005 (3) −0.053 (3)
O6 0.121 (4) 0.126 (4) 0.071 (3) −0.053 (3) −0.001 (3) −0.049 (3)
Cl2 0.0528 (8) 0.0685 (9) 0.0563 (8) 0.0000 (7) 0.0034 (6) −0.0261 (7)

Geometric parameters (Å, º)

C1—C6 1.378 (6) C12—C13 1.375 (6)
C1—C2 1.384 (6) C12—C17 1.380 (6)
C1—N1 1.424 (5) C12—N2 1.426 (5)
C2—C3 1.385 (6) C13—C14 1.387 (6)
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.376 (7) C14—C15 1.375 (6)
C3—Cl1 1.746 (4) C14—Cl2 1.743 (4)
C4—C5 1.380 (7) C15—C16 1.387 (6)
C4—C11 1.502 (6) C15—C22 1.507 (6)
C5—C6 1.382 (6) C16—C17 1.383 (6)
C5—H5 0.9300 C16—H16 0.9300
C6—H6 0.9300 C17—H17 0.9300
C7—O1 1.223 (5) C18—O4 1.220 (6)
C7—N1 1.344 (6) C18—N2 1.334 (6)
C7—C8 1.516 (6) C18—C19 1.515 (6)
C8—C9 1.499 (7) C19—C20 1.475 (8)
C8—H8A 0.9700 C19—H19A 0.9700
C8—H8B 0.9700 C19—H19B 0.9700
C9—C10 1.492 (6) C20—C21 1.491 (7)
C9—H9A 0.9700 C20—H20A 0.9700
C9—H9B 0.9700 C20—H20B 0.9700
C10—O2 1.202 (6) C21—O5 1.200 (7)
C10—O3 1.297 (6) C21—O6 1.297 (7)
C11—H11A 0.9600 C22—H22A 0.9600
C11—H11B 0.9600 C22—H22B 0.9600
C11—H11C 0.9600 C22—H22C 0.9600
N1—H1N 0.853 (19) N2—H2N 0.843 (19)
O3—H3O 0.83 (2) O6—H6O 0.83 (2)
C6—C1—C2 119.4 (4) C13—C12—C17 119.5 (4)
C6—C1—N1 119.7 (4) C13—C12—N2 121.0 (4)
C2—C1—N1 120.9 (4) C17—C12—N2 119.5 (4)
C1—C2—C3 118.9 (4) C12—C13—C14 119.4 (4)
C1—C2—H2 120.5 C12—C13—H13 120.3
C3—C2—H2 120.5 C14—C13—H13 120.3
C4—C3—C2 123.3 (4) C15—C14—C13 123.0 (4)
C4—C3—Cl1 119.6 (3) C15—C14—Cl2 119.1 (3)
C2—C3—Cl1 117.1 (4) C13—C14—Cl2 117.8 (4)
C3—C4—C5 116.0 (4) C14—C15—C16 116.0 (4)
C3—C4—C11 122.3 (5) C14—C15—C22 122.7 (4)
C5—C4—C11 121.6 (5) C16—C15—C22 121.3 (5)
C4—C5—C6 122.7 (5) C17—C16—C15 122.5 (5)
C4—C5—H5 118.7 C17—C16—H16 118.7
C6—C5—H5 118.7 C15—C16—H16 118.7
C1—C6—C5 119.7 (4) C12—C17—C16 119.6 (4)
C1—C6—H6 120.1 C12—C17—H17 120.2
C5—C6—H6 120.1 C16—C17—H17 120.2
O1—C7—N1 123.6 (4) O4—C18—N2 123.1 (4)
O1—C7—C8 121.7 (4) O4—C18—C19 121.3 (5)
N1—C7—C8 114.7 (4) N2—C18—C19 115.6 (4)
C9—C8—C7 112.8 (4) C20—C19—C18 112.7 (5)
C9—C8—H8A 109.0 C20—C19—H19A 109.1
C7—C8—H8A 109.0 C18—C19—H19A 109.1
C9—C8—H8B 109.0 C20—C19—H19B 109.1
C7—C8—H8B 109.0 C18—C19—H19B 109.1
H8A—C8—H8B 107.8 H19A—C19—H19B 107.8
C10—C9—C8 113.5 (4) C19—C20—C21 113.7 (5)
C10—C9—H9A 108.9 C19—C20—H20A 108.8
C8—C9—H9A 108.9 C21—C20—H20A 108.8
C10—C9—H9B 108.9 C19—C20—H20B 108.8
C8—C9—H9B 108.9 C21—C20—H20B 108.8
H9A—C9—H9B 107.7 H20A—C20—H20B 107.7
O2—C10—O3 122.9 (5) O5—C21—O6 122.6 (5)
O2—C10—C9 123.8 (5) O5—C21—C20 124.6 (6)
O3—C10—C9 113.3 (5) O6—C21—C20 112.8 (6)
C4—C11—H11A 109.5 C15—C22—H22A 109.5
C4—C11—H11B 109.5 C15—C22—H22B 109.5
H11A—C11—H11B 109.5 H22A—C22—H22B 109.5
C4—C11—H11C 109.5 C15—C22—H22C 109.5
H11A—C11—H11C 109.5 H22A—C22—H22C 109.5
H11B—C11—H11C 109.5 H22B—C22—H22C 109.5
C7—N1—C1 125.1 (4) C18—N2—C12 125.3 (4)
C7—N1—H1N 118 (3) C18—N2—H2N 118 (4)
C1—N1—H1N 117 (3) C12—N2—H2N 116 (3)
C10—O3—H3O 109 (5) C21—O6—H6O 105 (5)
C6—C1—C2—C3 −0.4 (7) C17—C12—C13—C14 0.1 (7)
N1—C1—C2—C3 178.1 (4) N2—C12—C13—C14 −177.3 (4)
C1—C2—C3—C4 0.1 (7) C12—C13—C14—C15 0.0 (7)
C1—C2—C3—Cl1 −179.8 (3) C12—C13—C14—Cl2 178.3 (4)
C2—C3—C4—C5 −0.1 (7) C13—C14—C15—C16 −0.5 (7)
Cl1—C3—C4—C5 179.8 (4) Cl2—C14—C15—C16 −178.8 (4)
C2—C3—C4—C11 −177.7 (5) C13—C14—C15—C22 178.3 (5)
Cl1—C3—C4—C11 2.1 (7) Cl2—C14—C15—C22 0.0 (7)
C3—C4—C5—C6 0.4 (8) C14—C15—C16—C17 1.0 (8)
C11—C4—C5—C6 178.0 (5) C22—C15—C16—C17 −177.8 (5)
C2—C1—C6—C5 0.6 (7) C13—C12—C17—C16 0.3 (7)
N1—C1—C6—C5 −177.9 (4) N2—C12—C17—C16 177.8 (5)
C4—C5—C6—C1 −0.6 (8) C15—C16—C17—C12 −0.9 (8)
O1—C7—C8—C9 2.6 (8) O4—C18—C19—C20 44.0 (9)
N1—C7—C8—C9 −178.3 (5) N2—C18—C19—C20 −137.0 (6)
C7—C8—C9—C10 −176.6 (5) C18—C19—C20—C21 −177.5 (5)
C8—C9—C10—O2 5.2 (9) C19—C20—C21—O5 19.0 (9)
C8—C9—C10—O3 −174.7 (6) C19—C20—C21—O6 −163.0 (6)
O1—C7—N1—C1 2.5 (8) O4—C18—N2—C12 −3.1 (10)
C8—C7—N1—C1 −176.6 (4) C19—C18—N2—C12 178.0 (5)
C6—C1—N1—C7 −141.8 (5) C13—C12—N2—C18 −44.3 (8)
C2—C1—N1—C7 39.7 (7) C17—C12—N2—C18 138.3 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O4i 0.85 (2) 2.05 (2) 2.882 (5) 165 (5)
O3—H3O···O2ii 0.83 (2) 1.83 (2) 2.654 (5) 173 (7)
N2—H2N···O1iii 0.84 (2) 2.07 (2) 2.891 (5) 165 (5)
O6—H6O···O5iv 0.83 (2) 1.90 (3) 2.703 (5) 164 (7)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+3, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5820).

References

  1. Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o785. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., D’Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.
  3. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.
  4. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.
  5. Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007623/bt5820sup1.cif

e-68-0o835-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007623/bt5820Isup2.hkl

e-68-0o835-Isup2.hkl (199.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007623/bt5820Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES