Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 24;68(Pt 3):o851. doi: 10.1107/S1600536812007520

2-(4-Methyl­phen­yl)-5-[({[5-(4-methyl­phen­yl)-1,3,4-thia­diazol-2-yl]sulfan­yl}meth­yl)sulfan­yl]-1,3,4-thia­diazole

Yong Wang a,*, Wen-ge Zhang b, Yu-bo Wang c, Jing-wen Yu a, Lin Zhou a
PMCID: PMC3297906  PMID: 22412709

Abstract

In the title compound, C19H16N4S4, the mol­ecules exhibit a butterfly conformation, where the thia­diazole and attached benzene rings in two wings are almost coplanar, with dihedral angles of 0.8 (3) and 0.9 (3)°, respectively, while the two thia­diazole rings form a dihedral angle of 46.3 (3)°.

Related literature  

For the biological properties of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999); Carvalho et al. (2004). For the crystal structures of related compounds, see: Li et al. (2011); Wang et al. (2010).graphic file with name e-68-0o851-scheme1.jpg

Experimental  

Crystal data  

  • C19H16N4S4

  • M r = 428.60

  • Monoclinic, Inline graphic

  • a = 16.8944 (14) Å

  • b = 4.1959 (5) Å

  • c = 27.107 (2) Å

  • β = 96.084 (8)°

  • V = 1910.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 113 K

  • 0.50 × 0.04 × 0.04 mm

Data collection  

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.785, T max = 0.980

  • 14969 measured reflections

  • 4535 independent reflections

  • 2927 reflections with I > 2σ(I)

  • R int = 0.094

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.142

  • S = 0.96

  • 4535 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812007520/cv5245sup1.cif

e-68-0o851-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007520/cv5245Isup2.hkl

e-68-0o851-Isup2.hkl (222.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007520/cv5245Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives are important for medicinal chemistry due to their chemical and pharmaceutical properties (Nakagawa et al., 1996; Wang et al., 1999; Carvalho et al., 2004). Similar crystal structures of the 1,3,4-thiadiazole derivatives have been reported . As a part of our research, the title compound (I) has been synthesized, and herewith we present its crystal structure.

In (I) (Fig. 1), all geometric parameters are normal and comparable with those reported for related 1,3,4-thiadiazole derivatives (Li et al., 2011; Wang et al., 2010). Two thiadiazole rings form a dihedral angle of 46.3 (3)%. The dihedral angles between the benzene rings and attached thiadiazole rings are 0.8 (3) and 0.9 (3)° indicating the two rings are almost parallel. The same situation has been observed in the crystal structure of 1,4-bis(5-phenyl-1,3,4-thiadiazol-2-ylsulfanyl)butane (Li et al., 2011).

Experimental

The title compound was synthesized by the reaction of the 1,1-dibromomethane (1.0 mmol) and 5-tolyl-1,3,4-thiadiazol-2-thiol (2.0 mmol) in ethanol (20 ml) at room temperature. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-enthanol (1:1).

Refinement

All H atoms were positioned geometrically and refined as riding (C—H = 0.95 - 0.99 Å), with Uiso(H) = 1.2 - 1.5Ueq (C).

Figures

Fig. 1.

Fig. 1.

View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level.

Crystal data

C19H16N4S4 F(000) = 888
Mr = 428.60 Dx = 1.490 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5461 reflections
a = 16.8944 (14) Å θ = 1.4–27.8°
b = 4.1959 (5) Å µ = 0.51 mm1
c = 27.107 (2) Å T = 113 K
β = 96.084 (8)° Prism, colourless
V = 1910.7 (3) Å3 0.50 × 0.04 × 0.04 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer 4535 independent reflections
Radiation source: rotating anode 2927 reflections with I > 2σ(I)
Multilayer monochromator Rint = 0.094
Detector resolution: 14.22 pixels mm-1 θmax = 27.8°, θmin = 1.4°
φ and ω scans h = −22→22
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −5→4
Tmin = 0.785, Tmax = 0.980 l = −35→31
14969 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0566P)2] where P = (Fo2 + 2Fc2)/3
4535 reflections (Δ/σ)max = 0.001
246 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.41711 (5) 0.77165 (19) −0.01333 (3) 0.0266 (2)
S2 0.39123 (5) 1.1072 (2) 0.08165 (3) 0.0282 (2)
S3 0.26282 (5) 1.06832 (19) 0.15267 (3) 0.0270 (2)
S4 0.33462 (5) 1.07934 (19) 0.26002 (3) 0.0268 (2)
N1 0.26848 (16) 0.6479 (6) −0.02748 (10) 0.0285 (6)
N2 0.27897 (16) 0.8187 (6) 0.01681 (10) 0.0288 (6)
N3 0.39960 (17) 1.3525 (6) 0.18983 (10) 0.0292 (6)
N4 0.44931 (16) 1.4137 (6) 0.23312 (10) 0.0289 (6)
C1 0.3546 (2) −0.0838 (8) −0.23078 (12) 0.0349 (8)
H1A 0.3223 −0.2782 −0.2313 0.052*
H1B 0.4101 −0.1403 −0.2341 0.052*
H1C 0.3343 0.0547 −0.2584 0.052*
C2 0.3500 (2) 0.0891 (7) −0.18231 (12) 0.0263 (7)
C3 0.4179 (2) 0.2240 (8) −0.15616 (12) 0.0296 (8)
H3 0.4680 0.2007 −0.1687 0.036*
C4 0.4135 (2) 0.3902 (7) −0.11251 (12) 0.0283 (7)
H4 0.4602 0.4807 −0.0955 0.034*
C5 0.34068 (19) 0.4251 (7) −0.09335 (11) 0.0237 (7)
C6 0.27246 (19) 0.2897 (7) −0.11872 (12) 0.0268 (7)
H6 0.2225 0.3126 −0.1060 0.032*
C7 0.2776 (2) 0.1227 (7) −0.16224 (12) 0.0275 (7)
H7 0.2309 0.0289 −0.1788 0.033*
C8 0.33463 (19) 0.6019 (7) −0.04729 (11) 0.0242 (7)
C9 0.35275 (19) 0.8994 (7) 0.02832 (11) 0.0255 (7)
C10 0.2996 (2) 1.2661 (7) 0.10072 (12) 0.0277 (7)
H10A 0.3080 1.4939 0.1092 0.033*
H10B 0.2581 1.2551 0.0721 0.033*
C11 0.33781 (19) 1.1814 (7) 0.19861 (12) 0.0247 (7)
C12 0.42392 (18) 1.2861 (7) 0.27270 (12) 0.0258 (7)
C13 0.46511 (19) 1.3186 (7) 0.32295 (12) 0.0262 (7)
C14 0.43531 (19) 1.1764 (8) 0.36363 (12) 0.0278 (7)
H14 0.3872 1.0580 0.3591 0.033*
C15 0.4755 (2) 1.2068 (8) 0.41067 (12) 0.0292 (7)
H15 0.4540 1.1096 0.4380 0.035*
C16 0.54653 (19) 1.3758 (7) 0.41906 (12) 0.0285 (7)
C17 0.5753 (2) 1.5225 (8) 0.37799 (12) 0.0286 (7)
H17 0.6231 1.6434 0.3826 0.034*
C18 0.53548 (19) 1.4947 (8) 0.33077 (12) 0.0279 (7)
H18 0.5562 1.5961 0.3035 0.033*
C19 0.5928 (2) 1.3981 (9) 0.46959 (12) 0.0346 (8)
H19A 0.6398 1.2602 0.4708 0.052*
H19B 0.5590 1.3294 0.4949 0.052*
H19C 0.6096 1.6190 0.4760 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0174 (4) 0.0334 (5) 0.0289 (4) −0.0015 (3) 0.0025 (3) −0.0022 (4)
S2 0.0207 (4) 0.0359 (5) 0.0279 (4) −0.0021 (3) 0.0019 (3) −0.0029 (4)
S3 0.0204 (4) 0.0320 (5) 0.0285 (4) −0.0002 (3) 0.0022 (3) −0.0018 (3)
S4 0.0197 (4) 0.0329 (5) 0.0279 (4) −0.0018 (3) 0.0022 (3) 0.0007 (3)
N1 0.0230 (15) 0.0343 (16) 0.0279 (14) 0.0008 (12) 0.0014 (12) −0.0048 (12)
N2 0.0242 (15) 0.0342 (16) 0.0282 (14) 0.0000 (12) 0.0035 (12) −0.0044 (12)
N3 0.0228 (15) 0.0352 (16) 0.0296 (14) −0.0016 (12) 0.0026 (12) 0.0011 (12)
N4 0.0211 (15) 0.0357 (16) 0.0297 (15) −0.0025 (12) 0.0013 (12) 0.0020 (12)
C1 0.034 (2) 0.037 (2) 0.0336 (19) 0.0041 (16) 0.0044 (16) −0.0033 (16)
C2 0.0266 (18) 0.0262 (17) 0.0261 (16) 0.0032 (14) 0.0024 (14) 0.0034 (13)
C3 0.0204 (17) 0.0360 (19) 0.0332 (18) 0.0014 (14) 0.0064 (15) 0.0030 (15)
C4 0.0199 (17) 0.0312 (18) 0.0332 (18) −0.0029 (14) 0.0003 (14) −0.0010 (14)
C5 0.0209 (17) 0.0231 (16) 0.0262 (16) 0.0013 (13) −0.0009 (13) 0.0034 (13)
C6 0.0203 (17) 0.0292 (17) 0.0311 (17) 0.0002 (13) 0.0035 (14) 0.0023 (14)
C7 0.0214 (17) 0.0306 (18) 0.0303 (17) −0.0017 (14) 0.0012 (14) −0.0005 (14)
C8 0.0196 (16) 0.0231 (16) 0.0290 (16) 0.0002 (13) −0.0020 (13) 0.0030 (13)
C9 0.0230 (17) 0.0279 (17) 0.0261 (16) 0.0001 (14) 0.0045 (14) 0.0043 (14)
C10 0.0249 (18) 0.0283 (17) 0.0290 (17) 0.0051 (14) −0.0019 (14) −0.0024 (14)
C11 0.0185 (16) 0.0265 (17) 0.0291 (16) 0.0049 (13) 0.0034 (13) 0.0005 (13)
C12 0.0151 (16) 0.0272 (17) 0.0355 (18) 0.0012 (13) 0.0041 (14) −0.0025 (14)
C13 0.0169 (16) 0.0276 (17) 0.0342 (18) 0.0044 (13) 0.0029 (14) −0.0012 (14)
C14 0.0156 (16) 0.0309 (18) 0.0371 (18) 0.0004 (13) 0.0028 (14) −0.0020 (15)
C15 0.0217 (17) 0.0355 (19) 0.0308 (17) −0.0002 (14) 0.0044 (14) −0.0010 (15)
C16 0.0193 (17) 0.0306 (18) 0.0350 (18) 0.0046 (14) 0.0001 (14) −0.0035 (15)
C17 0.0169 (16) 0.0317 (18) 0.0373 (19) 0.0002 (14) 0.0027 (14) −0.0037 (15)
C18 0.0210 (17) 0.0300 (17) 0.0329 (17) 0.0012 (14) 0.0043 (14) −0.0028 (15)
C19 0.0221 (18) 0.046 (2) 0.0344 (18) 0.0029 (15) −0.0023 (15) −0.0011 (16)

Geometric parameters (Å, º)

S1—C9 1.733 (3) C4—H4 0.9500
S1—C8 1.739 (3) C5—C6 1.398 (4)
S2—C9 1.753 (3) C5—C8 1.465 (4)
S2—C10 1.810 (3) C6—C7 1.383 (4)
S3—C11 1.745 (3) C6—H6 0.9500
S3—C10 1.801 (3) C7—H7 0.9500
S4—C11 1.725 (3) C10—H10A 0.9900
S4—C12 1.743 (3) C10—H10B 0.9900
N1—C8 1.304 (4) C12—C13 1.469 (4)
N1—N2 1.393 (4) C13—C14 1.394 (4)
N2—C9 1.297 (4) C13—C18 1.397 (4)
N3—C11 1.310 (4) C14—C15 1.386 (4)
N3—N4 1.393 (4) C14—H14 0.9500
N4—C12 1.311 (4) C15—C16 1.391 (4)
C1—C2 1.510 (4) C15—H15 0.9500
C1—H1A 0.9800 C16—C17 1.403 (5)
C1—H1B 0.9800 C16—C19 1.506 (4)
C1—H1C 0.9800 C17—C18 1.386 (5)
C2—C7 1.398 (4) C17—H17 0.9500
C2—C3 1.403 (4) C18—H18 0.9500
C3—C4 1.382 (4) C19—H19A 0.9800
C3—H3 0.9500 C19—H19B 0.9800
C4—C5 1.393 (4) C19—H19C 0.9800
C9—S1—C8 87.06 (15) S1—C9—S2 119.18 (19)
C9—S2—C10 99.51 (15) S3—C10—S2 115.46 (17)
C11—S3—C10 98.52 (15) S3—C10—H10A 108.4
C11—S4—C12 87.24 (15) S2—C10—H10A 108.4
C8—N1—N2 113.2 (3) S3—C10—H10B 108.4
C9—N2—N1 111.9 (3) S2—C10—H10B 108.4
C11—N3—N4 111.6 (3) H10A—C10—H10B 107.5
C12—N4—N3 113.2 (3) N3—C11—S4 114.7 (2)
C2—C1—H1A 109.5 N3—C11—S3 123.5 (2)
C2—C1—H1B 109.5 S4—C11—S3 121.77 (18)
H1A—C1—H1B 109.5 N4—C12—C13 123.9 (3)
C2—C1—H1C 109.5 N4—C12—S4 113.2 (2)
H1A—C1—H1C 109.5 C13—C12—S4 123.0 (2)
H1B—C1—H1C 109.5 C14—C13—C18 118.6 (3)
C7—C2—C3 117.7 (3) C14—C13—C12 121.2 (3)
C7—C2—C1 121.0 (3) C18—C13—C12 120.1 (3)
C3—C2—C1 121.3 (3) C15—C14—C13 120.3 (3)
C4—C3—C2 121.4 (3) C15—C14—H14 119.8
C4—C3—H3 119.3 C13—C14—H14 119.8
C2—C3—H3 119.3 C14—C15—C16 121.9 (3)
C3—C4—C5 120.2 (3) C14—C15—H15 119.1
C3—C4—H4 119.9 C16—C15—H15 119.1
C5—C4—H4 119.9 C15—C16—C17 117.3 (3)
C4—C5—C6 119.2 (3) C15—C16—C19 122.4 (3)
C4—C5—C8 121.0 (3) C17—C16—C19 120.3 (3)
C6—C5—C8 119.8 (3) C18—C17—C16 121.4 (3)
C7—C6—C5 120.2 (3) C18—C17—H17 119.3
C7—C6—H6 119.9 C16—C17—H17 119.3
C5—C6—H6 119.9 C17—C18—C13 120.4 (3)
C6—C7—C2 121.3 (3) C17—C18—H18 119.8
C6—C7—H7 119.3 C13—C18—H18 119.8
C2—C7—H7 119.3 C16—C19—H19A 109.5
N1—C8—C5 124.5 (3) C16—C19—H19B 109.5
N1—C8—S1 113.2 (2) H19A—C19—H19B 109.5
C5—C8—S1 122.3 (2) C16—C19—H19C 109.5
N2—C9—S1 114.6 (2) H19A—C19—H19C 109.5
N2—C9—S2 126.2 (3) H19B—C19—H19C 109.5
C8—N1—N2—C9 1.0 (4) C11—S3—C10—S2 67.8 (2)
C11—N3—N4—C12 0.4 (4) C9—S2—C10—S3 104.05 (19)
C7—C2—C3—C4 −1.3 (5) N4—N3—C11—S4 −0.1 (3)
C1—C2—C3—C4 178.2 (3) N4—N3—C11—S3 178.8 (2)
C2—C3—C4—C5 0.4 (5) C12—S4—C11—N3 −0.2 (3)
C3—C4—C5—C6 0.1 (5) C12—S4—C11—S3 −179.1 (2)
C3—C4—C5—C8 −179.6 (3) C10—S3—C11—N3 −2.0 (3)
C4—C5—C6—C7 0.2 (5) C10—S3—C11—S4 176.80 (19)
C8—C5—C6—C7 179.9 (3) N3—N4—C12—C13 −179.3 (3)
C5—C6—C7—C2 −1.0 (5) N3—N4—C12—S4 −0.6 (3)
C3—C2—C7—C6 1.6 (5) C11—S4—C12—N4 0.4 (2)
C1—C2—C7—C6 −177.9 (3) C11—S4—C12—C13 179.2 (3)
N2—N1—C8—C5 178.9 (3) N4—C12—C13—C14 −179.8 (3)
N2—N1—C8—S1 −0.9 (3) S4—C12—C13—C14 1.6 (4)
C4—C5—C8—N1 179.1 (3) N4—C12—C13—C18 0.3 (5)
C6—C5—C8—N1 −0.7 (5) S4—C12—C13—C18 −178.3 (2)
C4—C5—C8—S1 −1.2 (4) C18—C13—C14—C15 −0.8 (5)
C6—C5—C8—S1 179.1 (2) C12—C13—C14—C15 179.3 (3)
C9—S1—C8—N1 0.4 (2) C13—C14—C15—C16 −0.5 (5)
C9—S1—C8—C5 −179.4 (3) C14—C15—C16—C17 1.5 (5)
N1—N2—C9—S1 −0.7 (3) C14—C15—C16—C19 −177.1 (3)
N1—N2—C9—S2 −178.4 (2) C15—C16—C17—C18 −1.3 (5)
C8—S1—C9—N2 0.2 (3) C19—C16—C17—C18 177.4 (3)
C8—S1—C9—S2 178.1 (2) C16—C17—C18—C13 0.0 (5)
C10—S2—C9—N2 −16.9 (3) C14—C13—C18—C17 1.0 (5)
C10—S2—C9—S1 165.53 (19) C12—C13—C18—C17 −179.1 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5245).

References

  1. Carvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. Lett. 14, 5967–5970. [DOI] [PubMed]
  2. Li, S., Zhang, J., Jia, X., Gao, Y. & Wang, W. (2011). Acta Cryst. E67, o681. [DOI] [PMC free article] [PubMed]
  3. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.
  4. Rigaku/MSC (2005). CrystalClear Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.
  7. Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812007520/cv5245sup1.cif

e-68-0o851-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007520/cv5245Isup2.hkl

e-68-0o851-Isup2.hkl (222.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007520/cv5245Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES