Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 29;68(Pt 3):o860–o861. doi: 10.1107/S160053681200791X

N 2-(7-Bromo-9-butyl-9H-carbazol-2-yl)-9,9-diethyl-N 2,N 7,N 7-triphenyl-9H-fluorene-2,7-diamine

Abhishek Baheti a, K R Justin Thomas a,, Seik Weng Ng b, Edward R T Tiekink c,*
PMCID: PMC3297913  PMID: 22412716

Abstract

In the title mol­ecule, C51H46BrN3, the central fluorene residue is planar (r.m.s. deviation = 0.0203 Å), as is the carbazole system (r.m.s. deviation = 0.0154 Å), and these groups are almost orthogonal [dihedral angle = 79.72 (3)°]. The three-dimensional architecture is consolidated by C—H⋯π inter­actions. The butyl substituent is disordered with two sites resolved for the terminal propyl atoms; the major component had a site-occupancy factor of 0.686 (3).

Related literature  

For the use of carbazole and fluorene derivatives as hole-transporting and emitting materials in organic light-emitting diodes and as sensitizers in dye-sensitized solar cells, see: Thomas et al. (2001, 2004); Baheti et al. (2009, 2011). For related structures, see: Low et al. (2005); Chen et al. (2009); Gagnon & Laliberté (2008).graphic file with name e-68-0o860-scheme1.jpg

Experimental  

Crystal data  

  • C51H46BrN3

  • M r = 780.82

  • Monoclinic, Inline graphic

  • a = 8.6585 (2) Å

  • b = 10.6744 (2) Å

  • c = 43.6607 (6) Å

  • β = 92.114 (2)°

  • V = 4032.56 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.68 mm−1

  • T = 100 K

  • 0.22 × 0.18 × 0.14 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.836, T max = 1.000

  • 17423 measured reflections

  • 8220 independent reflections

  • 7219 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.112

  • S = 1.05

  • 8220 reflections

  • 506 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200791X/bt5825sup1.cif

e-68-0o860-sup1.cif (36.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200791X/bt5825Isup2.hkl

e-68-0o860-Isup2.hkl (394KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200791X/bt5825Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1–Cg3 are the centroids of the C13–C18, C7–C12 and C36⋯C41 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.95 2.67 3.444 (3) 139
C20—H20⋯Cg2ii 0.95 2.85 3.579 (2) 135
C44—H44⋯Cg3iii 0.95 2.99 3.836 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

KRJT is thankful to Department of Science and Technology, New Delhi, India, for financial support (ref. No. DST/TSG/ME/2010/27). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Carbazole (Thomas et al., 2001; Thomas et al., 2004) and fluorene (Baheti et al., 2009; Baheti et al., 2011) derivatives have been widely used as hole-transporting and emitting materials in organic light-emitting diodes and as sensitizers in dye-sensitized solar cells. The title compound, N2-(7-bromo-9-butyl-9H-carbazol-2-yl)-9,9-diethyl-N2,N7,N7-triphenyl-9H-fluorene-2,7-diamine (I), was synthesized as an intermediate in the synthetic sequence for the development of donor-acceptor compounds suitable for application as sensitizers in dye-sensitized solar cells.. Herein, the crystal structure determination of (I) is described. Related structures are known, i.e. 9,9-diethyl-N2,N2,N7,N7-tetraphenyl-9H-fluorene-2,7-diamine (Low et al., 2005), 9-butyl-9H-carbazole (Chen et al., 2009) and 2,7-dibromo-9-octyl-9H-carbazole (Gagnon & Laliberté, 2008).

In (I), Fig. 1, the 13 non-hydrogen atoms of the central fluorene residue are co-planar (r.m.s. deviation = 0.0203 Å). Similarly, the 13 non-hydrogen atoms of the carbazole system forms a plane (r.m.s. deviation = 0.0154 Å). The dihedral angle between the fluorene and carbazole fused ring systems is 79.72 (3)°, indicating an almost orthogonal relationship. The fluorene system forms dihedral angles of 88.22 (6) and 58.51 (7)° with the C1–C6 and C7–C12 N1-amine-phenyl rings, respectively; the dihedral angle between these phenyl rings is 64.45 (8) °. At the N2-amine side of the molecule, the dihedral angles formed between the fluorene and carbazole fused ring systems with the N2-bound phenyl ring are 62.96 (6) and 71.53 (6)°, respectively. With respect to the five-membered ring in the fluorene residue, the ethyl substituents are virtually perpendicular as seen in the values of the C17–C25–C26–C27 and C17–C25–C28–C29 torsion angles of 54.4 (3) and -60.6 (3)°, respectively. Finally, the major component of the disordered n-butyl chain adopts an extended trans conformation with the C48–C49–C50–C51 torsion angle being 173.2 (3)°; the equivalent value for the minor component is 179.8 (8)°.

Molecules are consolidated in the three-dimensional architecture by C—H···π interactions, Fig. 2 and Table 1.

Experimental

A mixture of 9,9-diethyl-N2,N2,N7-triphenyl-9H-fluorene-2,7-diamine, 2,7-dibromo-9-butyl-9H-carbazole, bis(diphenylphosphino)ferrocene, sodium tert-butoxide, and toluene (20 ml) was heated at 353 K for 36 h. The resultant solution was poured into water and extracted with dichloromethane. After drying over anhydrous sodium sulfate the combined dichloromethane extract was evaporated to yield a crude product. It was purified by column chromatography on silica gel using 4:1 mixture of hexanes and dichloromethane. White solid. Yield 66%; M.pt. 413–415 K. Re-crystallization was by slow evaporation of a solution of (I) from a 1:1 mixture of hexanes and dichloromethane. 1H NMR (500 MHz, CDCl3) δ 0.39 (t, J = 7.5 Hz, 6 H), 0.85–0.88 (m, 3 H), 1.29 (dd, J = 15.5 Hz, 7.5 Hz, 2 H), 1.71 (t, J = 7.5 Hz, 2 H), 1.81 (dd, J = 14.5 Hz, 7.5 Hz, 4 H), 4.06 (t, J = 7.0 Hz, 2 H), 6.98 (m, 5 H), 7.07–7.14 (m, 8 H), 7.17 (d, J = 8.5 Hz, 2 H), 7.23–7.25 (m, 3 H), 7.26–7.30 (m, 4 H), 7.46 (d, J = 1.0 Hz, 1 H), 7.49–7.52 (m, 2 H), 7.82 (d, J = 8.5 Hz, 1 H), 7.87 (d, J = 8.5 Hz, 1 H); 13C NMR (125.77 MHz, CDCl3) δ 151.32, 151.25, 148.45, 148.11, 147.02, 146.82, 146.58, 141.76, 141.71, 136.69, 136.66, 129.16, 123.87, 122.38, 122.06, 121.98, 120.83, 120.76, 119.80, 119.58, 119.45, 118.27, 117.74, 116.91, 111.58, 104.15, 56.09, 42.82, 32.59, 30.95, 20.45, 13.81, 8.63. HRMS calcd. for C51H46BrN3 [M + H] m/z 780.2948 found 780.2945.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The terminal propyl group of the butyl substituent was found to be disordered. Two sites were resolved and from fractional refinement (common anisotropic displacement parameters for pairs of atoms, and with 1,2- and 1,3- C—C distance constraints = 1.50±0.01 and 2.35±0.01 Å, respectively). The major component had a site occupancy factor = 0.686 (3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered n-butyl group is shown for reasons of clarity.

Fig. 2.

Fig. 2.

A view in projection down the b axis of the unit-cell contents of (I). The C—H···π interactions are shown as purple dashed lines.

Crystal data

C51H46BrN3 F(000) = 1632
Mr = 780.82 Dx = 1.286 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 7520 reflections
a = 8.6585 (2) Å θ = 3.0–76.8°
b = 10.6744 (2) Å µ = 1.68 mm1
c = 43.6607 (6) Å T = 100 K
β = 92.114 (2)° Wedge, colourless
V = 4032.56 (13) Å3 0.22 × 0.18 × 0.14 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 8220 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 7219 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.025
Detector resolution: 10.4041 pixels mm-1 θmax = 75.0°, θmin = 4.1°
ω scan h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −13→13
Tmin = 0.836, Tmax = 1.000 l = −54→23
17423 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0457P)2 + 2.7341P] where P = (Fo2 + 2Fc2)/3
8220 reflections (Δ/σ)max < 0.001
506 parameters Δρmax = 0.39 e Å3
28 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.49451 (3) 0.07445 (3) 0.162449 (5) 0.04399 (10)
N1 −0.0180 (3) 0.1837 (2) 0.52239 (4) 0.0408 (5)
N2 0.4685 (3) 0.59397 (17) 0.35350 (4) 0.0359 (4)
N3 0.3902 (2) 0.40069 (17) 0.25166 (4) 0.0314 (4)
C1 0.0477 (3) 0.1430 (2) 0.55124 (5) 0.0382 (5)
C2 −0.0076 (4) 0.1870 (3) 0.57881 (5) 0.0465 (6)
H2 −0.0917 0.2441 0.5788 0.056*
C3 0.0613 (4) 0.1465 (3) 0.60610 (6) 0.0568 (8)
H3 0.0246 0.1767 0.6250 0.068*
C4 0.1818 (4) 0.0636 (3) 0.60631 (6) 0.0605 (8)
H4 0.2292 0.0372 0.6252 0.073*
C5 0.2344 (4) 0.0182 (3) 0.57888 (7) 0.0578 (8)
H5 0.3166 −0.0408 0.5789 0.069*
C6 0.1670 (3) 0.0588 (3) 0.55128 (6) 0.0463 (6)
H6 0.2036 0.0281 0.5324 0.056*
C7 −0.1775 (3) 0.1817 (2) 0.51665 (5) 0.0387 (5)
C8 −0.2718 (3) 0.1027 (2) 0.53283 (6) 0.0434 (6)
H8 −0.2275 0.0493 0.5482 0.052*
C9 −0.4296 (3) 0.1006 (2) 0.52690 (6) 0.0464 (6)
H9 −0.4924 0.0474 0.5387 0.056*
C10 −0.4982 (3) 0.1748 (2) 0.50412 (6) 0.0442 (6)
H10 −0.6064 0.1716 0.4998 0.053*
C11 −0.4046 (3) 0.2534 (2) 0.48794 (5) 0.0424 (6)
H11 −0.4493 0.3051 0.4723 0.051*
C12 −0.2482 (3) 0.2583 (2) 0.49409 (5) 0.0405 (6)
H12 −0.1867 0.3146 0.4829 0.049*
C13 0.0785 (3) 0.2533 (2) 0.50293 (5) 0.0377 (5)
C14 0.1720 (3) 0.3484 (2) 0.51471 (5) 0.0402 (6)
H14 0.1775 0.3625 0.5362 0.048*
C15 0.2576 (3) 0.4233 (2) 0.49566 (5) 0.0388 (5)
H15 0.3235 0.4869 0.5040 0.047*
C16 0.2453 (3) 0.4037 (2) 0.46407 (5) 0.0359 (5)
C17 0.1538 (3) 0.3060 (2) 0.45225 (5) 0.0344 (5)
C18 0.0723 (3) 0.2289 (2) 0.47129 (5) 0.0376 (5)
H18 0.0133 0.1607 0.4632 0.045*
C19 0.3147 (3) 0.4699 (2) 0.43853 (5) 0.0340 (5)
C20 0.4145 (3) 0.5718 (2) 0.43754 (5) 0.0366 (5)
H20 0.4473 0.6131 0.4559 0.044*
C21 0.4658 (3) 0.6129 (2) 0.40948 (5) 0.0365 (5)
H21 0.5358 0.6814 0.4088 0.044*
C22 0.4151 (3) 0.5542 (2) 0.38222 (5) 0.0338 (5)
C23 0.3134 (3) 0.4527 (2) 0.38326 (5) 0.0336 (5)
H23 0.2789 0.4124 0.3648 0.040*
C24 0.2632 (3) 0.4112 (2) 0.41116 (5) 0.0331 (5)
C25 0.1528 (3) 0.3044 (2) 0.41730 (5) 0.0342 (5)
C26 −0.0112 (3) 0.3300 (2) 0.40369 (5) 0.0387 (5)
H26A −0.0062 0.3341 0.3811 0.046*
H26B −0.0784 0.2584 0.4087 0.046*
C27 −0.0858 (3) 0.4496 (3) 0.41489 (6) 0.0447 (6)
H27A −0.1898 0.4577 0.4055 0.067*
H27B −0.0231 0.5219 0.4092 0.067*
H27C −0.0926 0.4465 0.4372 0.067*
C28 0.2109 (3) 0.1793 (2) 0.40461 (5) 0.0380 (5)
H28A 0.1418 0.1114 0.4112 0.046*
H28B 0.2039 0.1825 0.3819 0.046*
C29 0.3755 (3) 0.1469 (2) 0.41470 (5) 0.0437 (6)
H29A 0.4037 0.0658 0.4060 0.066*
H29B 0.3836 0.1422 0.4371 0.066*
H29C 0.4457 0.2118 0.4075 0.066*
C30 0.4771 (3) 0.7215 (2) 0.34542 (5) 0.0335 (5)
C31 0.3800 (3) 0.8101 (2) 0.35774 (5) 0.0412 (6)
H31 0.3056 0.7857 0.3720 0.049*
C32 0.3923 (4) 0.9345 (2) 0.34904 (6) 0.0542 (8)
H32 0.3260 0.9951 0.3576 0.065*
C33 0.4991 (4) 0.9723 (3) 0.32808 (7) 0.0582 (9)
H33 0.5066 1.0579 0.3223 0.070*
C34 0.5945 (4) 0.8839 (3) 0.31569 (6) 0.0533 (7)
H34 0.6673 0.9084 0.3011 0.064*
C35 0.5848 (3) 0.7599 (2) 0.32438 (6) 0.0422 (6)
H35 0.6523 0.7000 0.3159 0.051*
C36 0.4962 (3) 0.5007 (2) 0.33102 (5) 0.0320 (5)
C37 0.6019 (3) 0.4045 (2) 0.33790 (5) 0.0339 (5)
H37 0.6517 0.4012 0.3576 0.041*
C38 0.6348 (3) 0.3145 (2) 0.31642 (5) 0.0317 (5)
H38 0.7063 0.2493 0.3213 0.038*
C39 0.5614 (3) 0.3203 (2) 0.28737 (5) 0.0286 (4)
C40 0.4525 (3) 0.4151 (2) 0.28119 (5) 0.0303 (4)
C41 0.4176 (3) 0.5065 (2) 0.30272 (5) 0.0319 (5)
H41 0.3433 0.5700 0.2982 0.038*
C42 0.5683 (3) 0.2456 (2) 0.25990 (5) 0.0290 (4)
C43 0.6524 (3) 0.1410 (2) 0.25159 (5) 0.0327 (5)
H43 0.7252 0.1047 0.2658 0.039*
C44 0.6302 (3) 0.0897 (2) 0.22258 (5) 0.0349 (5)
H44 0.6873 0.0183 0.2167 0.042*
C45 0.5223 (3) 0.1448 (2) 0.20215 (5) 0.0333 (5)
C46 0.4356 (3) 0.2488 (2) 0.20915 (5) 0.0324 (5)
H46 0.3630 0.2844 0.1948 0.039*
C47 0.4605 (3) 0.2990 (2) 0.23854 (5) 0.0296 (4)
C48 0.2643 (3) 0.4762 (2) 0.23805 (5) 0.0357 (5)
H48A 0.1843 0.4877 0.2534 0.043* 0.314 (3)
H48B 0.2164 0.4296 0.2205 0.043* 0.314 (3)
H48C 0.2073 0.5153 0.2548 0.043* 0.686 (3)
H48D 0.1916 0.4196 0.2268 0.043* 0.686 (3)
C49 0.3146 (5) 0.6037 (3) 0.22698 (8) 0.0396 (9) 0.686 (3)
H49A 0.2215 0.6529 0.2209 0.048* 0.686 (3)
H49B 0.3682 0.6482 0.2442 0.048* 0.686 (3)
C50 0.4191 (4) 0.5989 (3) 0.20061 (8) 0.0440 (8) 0.686 (3)
H50A 0.3715 0.5467 0.1841 0.053* 0.686 (3)
H50B 0.5185 0.5598 0.2072 0.053* 0.686 (3)
C51 0.4481 (6) 0.7292 (4) 0.18859 (11) 0.0651 (12) 0.686 (3)
H51A 0.5068 0.7238 0.1699 0.098* 0.686 (3)
H51B 0.5073 0.7774 0.2041 0.098* 0.686 (3)
H51C 0.3491 0.7709 0.1840 0.098* 0.686 (3)
C49' 0.3129 (14) 0.5782 (7) 0.21644 (15) 0.0396 (9) 0.314 (3)
H49C 0.3716 0.5411 0.1996 0.048* 0.314 (3)
H49D 0.2203 0.6201 0.2073 0.048* 0.314 (3)
C50' 0.4112 (10) 0.6717 (6) 0.23341 (16) 0.0440 (8) 0.314 (3)
H50C 0.5041 0.6302 0.2426 0.053* 0.314 (3)
H50D 0.3527 0.7095 0.2501 0.053* 0.314 (3)
C51' 0.4580 (12) 0.7712 (9) 0.2113 (2) 0.0651 (12) 0.314 (3)
H51D 0.5479 0.7425 0.2003 0.098* 0.314 (3)
H51E 0.4846 0.8480 0.2227 0.098* 0.314 (3)
H51F 0.3722 0.7881 0.1967 0.098* 0.314 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.06625 (19) 0.03919 (15) 0.02643 (13) 0.00117 (12) 0.00057 (11) −0.01037 (10)
N1 0.0573 (13) 0.0421 (11) 0.0232 (9) 0.0003 (10) 0.0030 (8) 0.0076 (8)
N2 0.0606 (13) 0.0275 (9) 0.0198 (8) −0.0020 (9) 0.0055 (8) −0.0026 (7)
N3 0.0445 (11) 0.0285 (9) 0.0210 (8) 0.0051 (8) −0.0021 (7) −0.0025 (7)
C1 0.0570 (15) 0.0344 (12) 0.0233 (10) −0.0016 (11) 0.0011 (10) 0.0044 (9)
C2 0.0700 (18) 0.0409 (14) 0.0289 (12) 0.0007 (13) 0.0047 (11) −0.0014 (10)
C3 0.085 (2) 0.0601 (18) 0.0251 (12) −0.0110 (17) −0.0002 (13) −0.0028 (12)
C4 0.070 (2) 0.077 (2) 0.0333 (14) −0.0104 (17) −0.0117 (13) 0.0186 (14)
C5 0.0559 (18) 0.0627 (19) 0.0546 (17) 0.0045 (15) 0.0016 (13) 0.0244 (15)
C6 0.0633 (17) 0.0413 (14) 0.0348 (13) 0.0030 (12) 0.0070 (11) 0.0087 (11)
C7 0.0594 (16) 0.0329 (12) 0.0236 (10) 0.0002 (11) 0.0009 (10) −0.0001 (9)
C8 0.0607 (16) 0.0392 (13) 0.0301 (12) −0.0017 (12) −0.0020 (11) 0.0076 (10)
C9 0.0627 (17) 0.0377 (13) 0.0387 (13) −0.0076 (12) −0.0006 (12) 0.0059 (11)
C10 0.0542 (15) 0.0390 (13) 0.0388 (13) −0.0032 (12) −0.0057 (11) 0.0003 (11)
C11 0.0643 (17) 0.0335 (12) 0.0291 (11) 0.0027 (11) −0.0023 (11) 0.0013 (10)
C12 0.0603 (16) 0.0341 (12) 0.0272 (11) 0.0014 (11) 0.0045 (10) 0.0025 (9)
C13 0.0556 (15) 0.0337 (12) 0.0241 (10) 0.0020 (11) 0.0031 (10) 0.0037 (9)
C14 0.0666 (17) 0.0349 (12) 0.0192 (10) 0.0017 (11) 0.0010 (10) 0.0007 (9)
C15 0.0651 (16) 0.0307 (11) 0.0206 (10) −0.0011 (11) −0.0007 (10) −0.0007 (9)
C16 0.0582 (15) 0.0293 (11) 0.0200 (10) 0.0024 (10) 0.0005 (9) 0.0008 (8)
C17 0.0522 (14) 0.0300 (11) 0.0209 (10) 0.0015 (10) −0.0002 (9) 0.0001 (8)
C18 0.0567 (15) 0.0321 (11) 0.0240 (10) 0.0001 (11) 0.0012 (10) 0.0015 (9)
C19 0.0539 (14) 0.0304 (11) 0.0175 (9) 0.0010 (10) −0.0016 (9) −0.0011 (8)
C20 0.0575 (15) 0.0328 (11) 0.0192 (10) −0.0004 (10) −0.0048 (9) −0.0042 (8)
C21 0.0541 (15) 0.0317 (11) 0.0236 (10) −0.0035 (10) −0.0019 (9) −0.0016 (9)
C22 0.0527 (14) 0.0306 (11) 0.0181 (9) 0.0021 (10) 0.0006 (9) −0.0004 (8)
C23 0.0522 (14) 0.0305 (11) 0.0178 (9) 0.0006 (10) −0.0018 (9) −0.0018 (8)
C24 0.0505 (13) 0.0280 (10) 0.0205 (10) 0.0019 (10) −0.0025 (9) −0.0011 (8)
C25 0.0535 (14) 0.0308 (11) 0.0182 (9) −0.0005 (10) −0.0002 (9) 0.0007 (8)
C26 0.0551 (15) 0.0364 (12) 0.0245 (10) −0.0053 (11) −0.0005 (10) 0.0005 (9)
C27 0.0602 (17) 0.0451 (14) 0.0287 (11) 0.0053 (12) −0.0006 (11) 0.0005 (10)
C28 0.0615 (16) 0.0302 (11) 0.0222 (10) −0.0011 (11) −0.0016 (10) −0.0017 (9)
C29 0.0675 (17) 0.0350 (12) 0.0281 (11) 0.0063 (12) −0.0026 (11) −0.0010 (10)
C30 0.0505 (14) 0.0293 (11) 0.0204 (9) −0.0023 (10) −0.0057 (9) −0.0019 (8)
C31 0.0609 (16) 0.0378 (13) 0.0242 (10) 0.0063 (11) −0.0082 (10) −0.0058 (9)
C32 0.090 (2) 0.0337 (13) 0.0366 (13) 0.0144 (14) −0.0268 (14) −0.0116 (11)
C33 0.096 (2) 0.0302 (13) 0.0458 (15) −0.0121 (14) −0.0347 (16) 0.0079 (12)
C34 0.073 (2) 0.0442 (15) 0.0415 (14) −0.0211 (14) −0.0112 (13) 0.0096 (12)
C35 0.0546 (15) 0.0377 (13) 0.0339 (12) −0.0064 (11) −0.0023 (11) 0.0001 (10)
C36 0.0491 (13) 0.0268 (10) 0.0204 (9) −0.0036 (9) 0.0044 (9) −0.0012 (8)
C37 0.0488 (13) 0.0319 (11) 0.0208 (9) −0.0027 (10) −0.0016 (9) 0.0012 (8)
C38 0.0407 (12) 0.0289 (11) 0.0255 (10) −0.0005 (9) −0.0002 (9) 0.0024 (8)
C39 0.0377 (11) 0.0250 (10) 0.0232 (10) −0.0021 (8) 0.0017 (8) −0.0001 (8)
C40 0.0427 (12) 0.0274 (10) 0.0208 (9) −0.0010 (9) −0.0001 (8) −0.0002 (8)
C41 0.0446 (13) 0.0280 (10) 0.0232 (10) 0.0029 (9) 0.0019 (9) −0.0006 (8)
C42 0.0377 (12) 0.0265 (10) 0.0227 (9) −0.0024 (9) 0.0018 (8) 0.0005 (8)
C43 0.0390 (12) 0.0297 (11) 0.0294 (10) 0.0025 (9) 0.0004 (9) 0.0009 (9)
C44 0.0428 (13) 0.0302 (11) 0.0318 (11) 0.0028 (10) 0.0052 (9) −0.0035 (9)
C45 0.0442 (13) 0.0316 (11) 0.0241 (10) −0.0042 (10) 0.0029 (9) −0.0047 (9)
C46 0.0437 (13) 0.0310 (11) 0.0224 (10) −0.0012 (9) −0.0019 (9) −0.0013 (8)
C47 0.0386 (12) 0.0258 (10) 0.0244 (10) −0.0011 (9) 0.0017 (8) −0.0013 (8)
C48 0.0439 (13) 0.0350 (12) 0.0280 (10) 0.0063 (10) −0.0025 (9) −0.0009 (9)
C49 0.0516 (17) 0.039 (2) 0.028 (2) 0.0061 (16) −0.005 (2) 0.0007 (17)
C50 0.0476 (19) 0.0464 (19) 0.0376 (17) −0.0027 (15) −0.0033 (14) 0.0048 (15)
C51 0.068 (3) 0.068 (3) 0.059 (2) −0.008 (2) −0.002 (2) 0.020 (2)
C49' 0.0516 (17) 0.039 (2) 0.028 (2) 0.0061 (16) −0.005 (2) 0.0007 (17)
C50' 0.0476 (19) 0.0464 (19) 0.0376 (17) −0.0027 (15) −0.0033 (14) 0.0048 (15)
C51' 0.068 (3) 0.068 (3) 0.059 (2) −0.008 (2) −0.002 (2) 0.020 (2)

Geometric parameters (Å, º)

Br1—C45 1.896 (2) C28—C29 1.516 (4)
N1—C7 1.395 (3) C28—H28A 0.9900
N1—C13 1.423 (3) C28—H28B 0.9900
N1—C1 1.430 (3) C29—H29A 0.9800
N2—C30 1.409 (3) C29—H29B 0.9800
N2—C22 1.417 (3) C29—H29C 0.9800
N2—C36 1.425 (3) C30—C31 1.387 (3)
N3—C47 1.379 (3) C30—C35 1.394 (4)
N3—C40 1.387 (3) C31—C32 1.386 (4)
N3—C48 1.464 (3) C31—H31 0.9500
C1—C6 1.369 (4) C32—C33 1.385 (5)
C1—C2 1.393 (3) C32—H32 0.9500
C2—C3 1.382 (4) C33—C34 1.378 (5)
C2—H2 0.9500 C33—H33 0.9500
C3—C4 1.368 (5) C34—C35 1.380 (4)
C3—H3 0.9500 C34—H34 0.9500
C4—C5 1.384 (5) C35—H35 0.9500
C4—H4 0.9500 C36—C41 1.390 (3)
C5—C6 1.389 (4) C36—C37 1.401 (3)
C5—H5 0.9500 C37—C38 1.380 (3)
C6—H6 0.9500 C37—H37 0.9500
C7—C8 1.386 (4) C38—C39 1.399 (3)
C7—C12 1.404 (3) C38—H38 0.9500
C8—C9 1.381 (4) C39—C40 1.403 (3)
C8—H8 0.9500 C39—C42 1.443 (3)
C9—C10 1.388 (4) C40—C41 1.395 (3)
C9—H9 0.9500 C41—H41 0.9500
C10—C11 1.379 (4) C42—C43 1.388 (3)
C10—H10 0.9500 C42—C47 1.415 (3)
C11—C12 1.372 (4) C43—C44 1.387 (3)
C11—H11 0.9500 C43—H43 0.9500
C12—H12 0.9500 C44—C45 1.397 (3)
C13—C14 1.385 (4) C44—H44 0.9500
C13—C18 1.405 (3) C45—C46 1.381 (3)
C14—C15 1.388 (3) C46—C47 1.400 (3)
C14—H14 0.9500 C46—H46 0.9500
C15—C16 1.395 (3) C48—C49' 1.511 (5)
C15—H15 0.9500 C48—C49 1.514 (3)
C16—C17 1.397 (3) C48—H48A 0.9900
C16—C19 1.467 (3) C48—H48B 0.9900
C17—C18 1.382 (3) C48—H48C 0.9900
C17—C25 1.526 (3) C48—H48D 0.9900
C18—H18 0.9500 C49—C50 1.491 (4)
C19—C20 1.391 (3) C49—H49A 0.9900
C19—C24 1.407 (3) C49—H49B 0.9900
C20—C21 1.390 (3) C50—C51 1.511 (4)
C20—H20 0.9500 C50—H50A 0.9900
C21—C22 1.402 (3) C50—H50B 0.9900
C21—H21 0.9500 C51—H51A 0.9800
C22—C23 1.398 (3) C51—H51B 0.9800
C23—C24 1.381 (3) C51—H51C 0.9800
C23—H23 0.9500 C49'—C50' 1.491 (5)
C24—C25 1.518 (3) C49'—H49C 0.9900
C25—C28 1.538 (3) C49'—H49D 0.9900
C25—C26 1.543 (3) C50'—C51' 1.500 (5)
C26—C27 1.520 (4) C50'—H50C 0.9900
C26—H26A 0.9900 C50'—H50D 0.9900
C26—H26B 0.9900 C51'—H51D 0.9800
C27—H27A 0.9800 C51'—H51E 0.9800
C27—H27B 0.9800 C51'—H51F 0.9800
C27—H27C 0.9800
C7—N1—C13 120.01 (19) H29B—C29—H29C 109.5
C7—N1—C1 120.8 (2) C31—C30—C35 119.0 (2)
C13—N1—C1 117.5 (2) C31—C30—N2 121.6 (2)
C30—N2—C22 122.21 (19) C35—C30—N2 119.4 (2)
C30—N2—C36 119.42 (18) C32—C31—C30 119.6 (3)
C22—N2—C36 117.94 (18) C32—C31—H31 120.2
C47—N3—C40 108.14 (18) C30—C31—H31 120.2
C47—N3—C48 126.71 (18) C33—C32—C31 121.3 (3)
C40—N3—C48 125.02 (18) C33—C32—H32 119.3
C6—C1—C2 120.2 (2) C31—C32—H32 119.3
C6—C1—N1 118.4 (2) C34—C33—C32 119.0 (3)
C2—C1—N1 121.3 (2) C34—C33—H33 120.5
C3—C2—C1 119.2 (3) C32—C33—H33 120.5
C3—C2—H2 120.4 C33—C34—C35 120.4 (3)
C1—C2—H2 120.4 C33—C34—H34 119.8
C4—C3—C2 120.9 (3) C35—C34—H34 119.8
C4—C3—H3 119.6 C34—C35—C30 120.8 (3)
C2—C3—H3 119.6 C34—C35—H35 119.6
C3—C4—C5 119.7 (3) C30—C35—H35 119.6
C3—C4—H4 120.1 C41—C36—C37 121.2 (2)
C5—C4—H4 120.1 C41—C36—N2 119.5 (2)
C4—C5—C6 120.0 (3) C37—C36—N2 119.35 (19)
C4—C5—H5 120.0 C38—C37—C36 121.0 (2)
C6—C5—H5 120.0 C38—C37—H37 119.5
C1—C6—C5 119.9 (3) C36—C37—H37 119.5
C1—C6—H6 120.0 C37—C38—C39 119.1 (2)
C5—C6—H6 120.0 C37—C38—H38 120.4
C8—C7—N1 121.1 (2) C39—C38—H38 120.4
C8—C7—C12 117.5 (2) C38—C39—C40 119.1 (2)
N1—C7—C12 121.4 (2) C38—C39—C42 134.2 (2)
C9—C8—C7 120.8 (2) C40—C39—C42 106.67 (18)
C9—C8—H8 119.6 N3—C40—C41 128.1 (2)
C7—C8—H8 119.6 N3—C40—C39 109.50 (18)
C8—C9—C10 121.3 (3) C41—C40—C39 122.36 (19)
C8—C9—H9 119.3 C36—C41—C40 117.2 (2)
C10—C9—H9 119.3 C36—C41—H41 121.4
C11—C10—C9 118.1 (3) C40—C41—H41 121.4
C11—C10—H10 121.0 C43—C42—C47 119.45 (19)
C9—C10—H10 121.0 C43—C42—C39 134.4 (2)
C12—C11—C10 121.1 (2) C47—C42—C39 106.18 (19)
C12—C11—H11 119.4 C44—C43—C42 120.0 (2)
C10—C11—H11 119.4 C44—C43—H43 120.0
C11—C12—C7 121.1 (2) C42—C43—H43 120.0
C11—C12—H12 119.4 C43—C44—C45 118.9 (2)
C7—C12—H12 119.4 C43—C44—H44 120.5
C14—C13—C18 120.1 (2) C45—C44—H44 120.5
C14—C13—N1 120.6 (2) C46—C45—C44 123.6 (2)
C18—C13—N1 119.2 (2) C46—C45—Br1 117.97 (17)
C13—C14—C15 121.1 (2) C44—C45—Br1 118.43 (17)
C13—C14—H14 119.4 C45—C46—C47 116.3 (2)
C15—C14—H14 119.4 C45—C46—H46 121.8
C14—C15—C16 118.9 (2) C47—C46—H46 121.8
C14—C15—H15 120.6 N3—C47—C46 128.8 (2)
C16—C15—H15 120.6 N3—C47—C42 109.50 (18)
C15—C16—C17 119.9 (2) C46—C47—C42 121.7 (2)
C15—C16—C19 131.3 (2) N3—C48—C49' 115.4 (5)
C17—C16—C19 108.72 (19) N3—C48—C49 113.9 (3)
C18—C17—C16 121.2 (2) N3—C48—H48A 108.8
C18—C17—C25 127.6 (2) C49'—C48—H48A 123.5
C16—C17—C25 111.1 (2) C49—C48—H48A 108.8
C17—C18—C13 118.6 (2) N3—C48—H48B 108.8
C17—C18—H18 120.7 C49'—C48—H48B 89.9
C13—C18—H18 120.7 C49—C48—H48B 108.8
C20—C19—C24 120.0 (2) H48A—C48—H48B 107.7
C20—C19—C16 132.3 (2) N3—C48—H48C 108.4
C24—C19—C16 107.8 (2) C49'—C48—H48C 108.4
C21—C20—C19 119.6 (2) C49—C48—H48C 90.8
C21—C20—H20 120.2 H48B—C48—H48C 125.2
C19—C20—H20 120.2 N3—C48—H48D 108.4
C20—C21—C22 120.5 (2) C49'—C48—H48D 108.4
C20—C21—H21 119.8 C49—C48—H48D 125.1
C22—C21—H21 119.8 H48A—C48—H48D 88.0
C23—C22—C21 119.8 (2) H48C—C48—H48D 107.5
C23—C22—N2 119.17 (19) C50—C49—C48 113.9 (3)
C21—C22—N2 121.0 (2) C50—C49—H49A 108.8
C24—C23—C22 119.7 (2) C48—C49—H49A 108.8
C24—C23—H23 120.1 C50—C49—H49B 108.8
C22—C23—H23 120.1 C48—C49—H49B 108.8
C23—C24—C19 120.4 (2) H49A—C49—H49B 107.7
C23—C24—C25 128.1 (2) C49—C50—C51 110.5 (3)
C19—C24—C25 111.48 (19) C49—C50—H50A 109.6
C24—C25—C17 100.81 (18) C51—C50—H50A 109.6
C24—C25—C28 111.8 (2) C49—C50—H50B 109.6
C17—C25—C28 112.35 (18) C51—C50—H50B 109.6
C24—C25—C26 112.07 (19) H50A—C50—H50B 108.1
C17—C25—C26 110.7 (2) C50—C51—H51A 109.5
C28—C25—C26 108.90 (19) C50—C51—H51B 109.5
C27—C26—C25 114.9 (2) H51A—C51—H51B 109.5
C27—C26—H26A 108.5 C50—C51—H51C 109.5
C25—C26—H26A 108.5 H51A—C51—H51C 109.5
C27—C26—H26B 108.5 H51B—C51—H51C 109.5
C25—C26—H26B 108.5 C50'—C49'—C48 109.8 (5)
H26A—C26—H26B 107.5 C50'—C49'—H49C 109.7
C26—C27—H27A 109.5 C48—C49'—H49C 109.7
C26—C27—H27B 109.5 C50'—C49'—H49D 109.7
H27A—C27—H27B 109.5 C48—C49'—H49D 109.7
C26—C27—H27C 109.5 H49C—C49'—H49D 108.2
H27A—C27—H27C 109.5 C49'—C50'—C51' 108.5 (5)
H27B—C27—H27C 109.5 C49'—C50'—H50C 110.0
C29—C28—C25 114.20 (19) C51'—C50'—H50C 110.0
C29—C28—H28A 108.7 C49'—C50'—H50D 110.0
C25—C28—H28A 108.7 C51'—C50'—H50D 110.0
C29—C28—H28B 108.7 H50C—C50'—H50D 108.4
C25—C28—H28B 108.7 C50'—C51'—H51D 109.5
H28A—C28—H28B 107.6 C50'—C51'—H51E 109.5
C28—C29—H29A 109.5 H51D—C51'—H51E 109.5
C28—C29—H29B 109.5 C50'—C51'—H51F 109.5
H29A—C29—H29B 109.5 H51D—C51'—H51F 109.5
C28—C29—H29C 109.5 H51E—C51'—H51F 109.5
H29A—C29—H29C 109.5
C7—N1—C1—C6 130.2 (3) C18—C17—C25—C26 60.7 (3)
C13—N1—C1—C6 −64.6 (3) C16—C17—C25—C26 −116.1 (2)
C7—N1—C1—C2 −49.5 (4) C24—C25—C26—C27 −57.3 (3)
C13—N1—C1—C2 115.7 (3) C17—C25—C26—C27 54.4 (3)
C6—C1—C2—C3 1.3 (4) C28—C25—C26—C27 178.4 (2)
N1—C1—C2—C3 −178.9 (3) C24—C25—C28—C29 52.0 (3)
C1—C2—C3—C4 −0.5 (5) C17—C25—C28—C29 −60.6 (3)
C2—C3—C4—C5 −0.8 (5) C26—C25—C28—C29 176.4 (2)
C3—C4—C5—C6 1.3 (5) C22—N2—C30—C31 −27.5 (3)
C2—C1—C6—C5 −0.8 (4) C36—N2—C30—C31 144.8 (2)
N1—C1—C6—C5 179.4 (3) C22—N2—C30—C35 153.0 (2)
C4—C5—C6—C1 −0.5 (5) C36—N2—C30—C35 −34.7 (3)
C13—N1—C7—C8 171.9 (2) C35—C30—C31—C32 −0.3 (3)
C1—N1—C7—C8 −23.3 (4) N2—C30—C31—C32 −179.8 (2)
C13—N1—C7—C12 −7.4 (3) C30—C31—C32—C33 0.4 (4)
C1—N1—C7—C12 157.5 (2) C31—C32—C33—C34 0.2 (4)
N1—C7—C8—C9 −179.6 (2) C32—C33—C34—C35 −0.9 (4)
C12—C7—C8—C9 −0.3 (4) C33—C34—C35—C30 1.0 (4)
C7—C8—C9—C10 1.7 (4) C31—C30—C35—C34 −0.5 (4)
C8—C9—C10—C11 −1.6 (4) N2—C30—C35—C34 179.1 (2)
C9—C10—C11—C12 0.1 (4) C30—N2—C36—C41 −50.9 (3)
C10—C11—C12—C7 1.3 (4) C22—N2—C36—C41 121.7 (2)
C8—C7—C12—C11 −1.2 (4) C30—N2—C36—C37 129.3 (2)
N1—C7—C12—C11 178.1 (2) C22—N2—C36—C37 −58.1 (3)
C7—N1—C13—C14 121.1 (3) C41—C36—C37—C38 2.0 (4)
C1—N1—C13—C14 −44.3 (3) N2—C36—C37—C38 −178.2 (2)
C7—N1—C13—C18 −55.7 (3) C36—C37—C38—C39 0.3 (3)
C1—N1—C13—C18 139.0 (2) C37—C38—C39—C40 −2.1 (3)
C18—C13—C14—C15 1.8 (4) C37—C38—C39—C42 179.2 (2)
N1—C13—C14—C15 −175.0 (2) C47—N3—C40—C41 179.1 (2)
C13—C14—C15—C16 1.7 (4) C48—N3—C40—C41 −4.8 (4)
C14—C15—C16—C17 −3.0 (4) C47—N3—C40—C39 −1.2 (3)
C14—C15—C16—C19 177.0 (3) C48—N3—C40—C39 174.9 (2)
C15—C16—C17—C18 1.0 (4) C38—C39—C40—N3 −177.8 (2)
C19—C16—C17—C18 −179.0 (2) C42—C39—C40—N3 1.2 (2)
C15—C16—C17—C25 178.1 (2) C38—C39—C40—C41 1.9 (3)
C19—C16—C17—C25 −1.9 (3) C42—C39—C40—C41 −179.1 (2)
C16—C17—C18—C13 2.4 (4) C37—C36—C41—C40 −2.1 (3)
C25—C17—C18—C13 −174.2 (2) N2—C36—C41—C40 178.1 (2)
C14—C13—C18—C17 −3.7 (4) N3—C40—C41—C36 179.8 (2)
N1—C13—C18—C17 173.1 (2) C39—C40—C41—C36 0.2 (3)
C15—C16—C19—C20 0.4 (5) C38—C39—C42—C43 −1.6 (5)
C17—C16—C19—C20 −179.5 (3) C40—C39—C42—C43 179.7 (2)
C15—C16—C19—C24 −179.8 (3) C38—C39—C42—C47 178.0 (2)
C17—C16—C19—C24 0.2 (3) C40—C39—C42—C47 −0.7 (2)
C24—C19—C20—C21 −1.7 (4) C47—C42—C43—C44 −0.1 (3)
C16—C19—C20—C21 178.0 (3) C39—C42—C43—C44 179.5 (2)
C19—C20—C21—C22 1.4 (4) C42—C43—C44—C45 −0.1 (3)
C20—C21—C22—C23 −0.6 (4) C43—C44—C45—C46 0.2 (4)
C20—C21—C22—N2 −179.0 (2) C43—C44—C45—Br1 179.46 (18)
C30—N2—C22—C23 136.5 (2) C44—C45—C46—C47 0.0 (4)
C36—N2—C22—C23 −35.9 (3) Br1—C45—C46—C47 −179.32 (17)
C30—N2—C22—C21 −45.1 (4) C40—N3—C47—C46 −179.9 (2)
C36—N2—C22—C21 142.5 (2) C48—N3—C47—C46 4.0 (4)
C21—C22—C23—C24 0.1 (4) C40—N3—C47—C42 0.7 (3)
N2—C22—C23—C24 178.6 (2) C48—N3—C47—C42 −175.3 (2)
C22—C23—C24—C19 −0.4 (4) C45—C46—C47—N3 −179.5 (2)
C22—C23—C24—C25 179.4 (2) C45—C46—C47—C42 −0.2 (3)
C20—C19—C24—C23 1.2 (4) C43—C42—C47—N3 179.7 (2)
C16—C19—C24—C23 −178.6 (2) C39—C42—C47—N3 0.0 (2)
C20—C19—C24—C25 −178.7 (2) C43—C42—C47—C46 0.3 (3)
C16—C19—C24—C25 1.6 (3) C39—C42—C47—C46 −179.4 (2)
C23—C24—C25—C17 177.6 (2) C47—N3—C48—C49' −83.2 (4)
C19—C24—C25—C17 −2.5 (3) C40—N3—C48—C49' 101.4 (4)
C23—C24—C25—C28 58.1 (3) C47—N3—C48—C49 −105.5 (3)
C19—C24—C25—C28 −122.1 (2) C40—N3—C48—C49 79.0 (3)
C23—C24—C25—C26 −64.5 (3) N3—C48—C49—C50 66.4 (4)
C19—C24—C25—C26 115.3 (2) C49'—C48—C49—C50 −32.5 (15)
C18—C17—C25—C24 179.5 (2) C48—C49—C50—C51 173.2 (3)
C16—C17—C25—C24 2.6 (3) N3—C48—C49'—C50' −63.3 (9)
C18—C17—C25—C28 −61.3 (3) C49—C48—C49'—C50' 27.2 (11)
C16—C17—C25—C28 121.8 (2) C48—C49'—C50'—C51' 179.8 (8)

Hydrogen-bond geometry (Å, º)

Cg1–Cg3 are the centroids of the C13–C18, C7–C12 and C36···C41 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C10—H10···Cg1i 0.95 2.67 3.444 (3) 139
C20—H20···Cg2ii 0.95 2.85 3.579 (2) 135
C44—H44···Cg3iii 0.95 2.99 3.836 (3) 149

Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+1; (iii) x+3/2, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5825).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Baheti, A., Singh, P., Lee, C.-P., Thomas, K. R. J. & Ho, K.-C. (2011). J. Org. Chem. 76, 4910—4920. [DOI] [PubMed]
  3. Baheti, A., Tyagi, P., Thomas, K. R. J., Hsu, Y. C. & Lin, J. T. (2009). J. Phys. Chem. C, 113, 8541—8547.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Chen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gagnon, E. & Laliberté, D. (2008). Acta Cryst. E64, o2147. [DOI] [PMC free article] [PubMed]
  8. Low, P. J., Paterson, M. A. J., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R., Brooke, R. & Brown, B. (2005). J. Mater. Chem. 15, 2304–2315.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Chuan, C.-H. (2004). Chem. Mater. 16, 5437–5444.
  11. Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404—9411. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200791X/bt5825sup1.cif

e-68-0o860-sup1.cif (36.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200791X/bt5825Isup2.hkl

e-68-0o860-Isup2.hkl (394KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200791X/bt5825Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES