Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 29;68(Pt 3):o877. doi: 10.1107/S1600536812007428

Ethyl 1-(4-chloro­benz­yl)-3-phenyl-1H-pyrazole-5-carboxyl­ate

Ben-Qian Hao a, Wei-Ren Xu b, Fan-Cui Meng b, Gui-Yun Duan a,*
PMCID: PMC3297926  PMID: 22412729

Abstract

In the title compound, C19H17ClN2O2, the pyrazole ring makes dihedral angles of 6.97 (5) and 79.25 (1)°, respectively, with the phenyl and chlorophenyl rings, respectively. In the crystal, C—H⋯O hydrogen bonds are observed.

Related literature  

For background to the title compound, see: Ge et al. (2007, 2009, 2011). For a related compound, see: Xia et al. (2007).graphic file with name e-68-0o877-scheme1.jpg

Experimental  

Crystal data  

  • C19H17ClN2O2

  • M r = 340.80

  • Triclinic, Inline graphic

  • a = 8.1815 (10) Å

  • b = 10.4039 (12) Å

  • c = 11.0969 (13) Å

  • α = 109.981 (2)°

  • β = 90.107 (2)°

  • γ = 104.046 (2)°

  • V = 857.43 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.26 × 0.24 × 0.20 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.941, T max = 0.954

  • 4495 measured reflections

  • 3008 independent reflections

  • 2554 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.107

  • S = 1.03

  • 3008 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007428/zj2059sup1.cif

e-68-0o877-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007428/zj2059Isup2.hkl

e-68-0o877-Isup2.hkl (147.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007428/zj2059Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.56 3.281 (2) 135
C1—H1B⋯O1 0.97 2.42 2.921 (2) 111

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to the wide application in agrochemical and pharmaceutical fields (Ge et al., 2009, 2011). Some pyrazole derivatives which belong to this category have been of interest for their biological activities. Considerable efforts have been devoted to the development of novel pyrazole compounds. The title pyrazole (I) (Fig. 1) was synthesized in order to study and compare its biological properties with other related compounds (Xia et al., 2007). (I) was screened for anticancer activities and found to be inactive. We report here the crystal structure of the title compound. In the title compound, C19H17ClN2O2, all bond lengths and angles show normal values. The pyrazole ring makes dihedral angles of 6.97° and 79.25°, respectively, with the C14–C19 and C2–C7 phenyl rings. There existed intermolecule C—H···O hydrogen bonds to stablized the crystal structure.

Experimental

A mixture of ethyl 3-phenyl-1H-pyrazole-5-carboxylate (0.02 mol), 1-chloro-4-(chloromethyl)benzene (0.0024 mol) and potassium carbonate (0.02 mol) in acetonitrile (100 ml) was heated to reflux for 3 h. The solvent was removed under reduced pressure and a product was isolated by column chromatography on silica gel (yield 82%). Crystals of (I) suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate (0.10 M) to cool slowly to room temperature (without temperature control) and allowing the solvent to evaporate for 2 d.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.96 Å (for CH3 groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) the equivalent displacement parameter of their parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I).

Crystal data

C19H17ClN2O2 Z = 2
Mr = 340.80 F(000) = 356
Triclinic, P1 Dx = 1.320 Mg m3
a = 8.1815 (10) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.4039 (12) Å Cell parameters from 2727 reflections
c = 11.0969 (13) Å θ = 2.4–28.2°
α = 109.981 (2)° µ = 0.24 mm1
β = 90.107 (2)° T = 298 K
γ = 104.046 (2)° Block, white
V = 857.43 (18) Å3 0.26 × 0.24 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer 3008 independent reflections
Radiation source: fine-focus sealed tube 2554 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
φ and ω scans θmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −9→9
Tmin = 0.941, Tmax = 0.954 k = −11→12
4495 measured reflections l = −11→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2205P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3008 reflections Δρmax = 0.25 e Å3
218 parameters Δρmin = −0.30 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.082 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.50815 (7) 0.95990 (7) 0.77388 (6) 0.0839 (2)
O1 0.84683 (18) 0.38892 (14) 0.64732 (11) 0.0665 (4)
O2 0.85747 (17) 0.25171 (13) 0.76392 (11) 0.0598 (3)
N1 0.75907 (17) 0.58814 (15) 0.87794 (13) 0.0492 (3)
N2 0.71786 (18) 0.65423 (15) 0.99660 (13) 0.0514 (4)
C1 0.7812 (2) 0.6630 (2) 0.78600 (17) 0.0561 (4)
H1A 0.7167 0.7334 0.8091 0.067*
H1B 0.7367 0.5960 0.7006 0.067*
C2 0.9642 (2) 0.73491 (18) 0.78307 (15) 0.0501 (4)
C3 1.0607 (3) 0.8300 (2) 0.89533 (17) 0.0650 (5)
H3 1.0125 0.8475 0.9733 0.078*
C4 1.2266 (3) 0.8989 (2) 0.89318 (18) 0.0707 (5)
H4 1.2900 0.9625 0.9689 0.085*
C5 1.2976 (2) 0.8726 (2) 0.77783 (18) 0.0584 (5)
C6 1.2062 (2) 0.77923 (19) 0.66533 (16) 0.0563 (4)
H6 1.2553 0.7623 0.5878 0.068*
C7 1.0400 (2) 0.71053 (19) 0.66882 (16) 0.0546 (4)
H7 0.9778 0.6465 0.5928 0.066*
C8 0.78772 (19) 0.46120 (17) 0.86693 (15) 0.0462 (4)
C9 0.8332 (2) 0.36663 (18) 0.74715 (15) 0.0491 (4)
C10 0.9062 (3) 0.1503 (2) 0.65285 (18) 0.0641 (5)
H10A 1.0026 0.1973 0.6190 0.077*
H10B 0.8133 0.1060 0.5855 0.077*
C11 0.9509 (3) 0.0421 (2) 0.6971 (2) 0.0779 (6)
H11A 1.0399 0.0877 0.7659 0.117*
H11B 0.9883 −0.0249 0.6267 0.117*
H11C 0.8533 −0.0063 0.7270 0.117*
C12 0.7612 (2) 0.44406 (18) 0.98320 (15) 0.0479 (4)
H12 0.7698 0.3673 1.0054 0.058*
C13 0.71823 (19) 0.56638 (17) 1.06121 (15) 0.0457 (4)
C14 0.67851 (19) 0.60557 (18) 1.19642 (15) 0.0473 (4)
C15 0.6985 (2) 0.5232 (2) 1.26854 (16) 0.0564 (4)
H15 0.7340 0.4412 1.2303 0.068*
C16 0.6660 (3) 0.5621 (2) 1.39691 (18) 0.0656 (5)
H16 0.6798 0.5062 1.4441 0.079*
C17 0.6135 (3) 0.6829 (2) 1.45453 (18) 0.0676 (5)
H17 0.5926 0.7095 1.5408 0.081*
C18 0.5921 (2) 0.7646 (2) 1.38374 (19) 0.0678 (5)
H18 0.5561 0.8462 1.4226 0.081*
C19 0.6235 (2) 0.7266 (2) 1.25547 (17) 0.0573 (4)
H19 0.6077 0.7823 1.2086 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0670 (3) 0.0917 (4) 0.0892 (4) 0.0145 (3) 0.0093 (3) 0.0313 (3)
O1 0.0907 (10) 0.0682 (8) 0.0420 (7) 0.0261 (7) 0.0127 (6) 0.0173 (6)
O2 0.0781 (8) 0.0569 (7) 0.0473 (7) 0.0281 (6) 0.0168 (6) 0.0146 (6)
N1 0.0541 (8) 0.0561 (8) 0.0408 (7) 0.0195 (6) 0.0075 (6) 0.0175 (6)
N2 0.0560 (8) 0.0559 (8) 0.0444 (8) 0.0206 (7) 0.0092 (6) 0.0162 (7)
C1 0.0677 (11) 0.0640 (11) 0.0460 (9) 0.0263 (9) 0.0052 (8) 0.0247 (8)
C2 0.0668 (11) 0.0502 (9) 0.0394 (8) 0.0232 (8) 0.0059 (7) 0.0179 (7)
C3 0.0789 (13) 0.0709 (12) 0.0386 (9) 0.0173 (10) 0.0123 (9) 0.0126 (9)
C4 0.0802 (14) 0.0731 (13) 0.0436 (10) 0.0107 (11) −0.0019 (9) 0.0078 (9)
C5 0.0652 (11) 0.0596 (11) 0.0548 (10) 0.0218 (9) 0.0074 (8) 0.0217 (9)
C6 0.0716 (12) 0.0619 (11) 0.0425 (9) 0.0280 (9) 0.0133 (8) 0.0199 (8)
C7 0.0735 (12) 0.0567 (10) 0.0353 (8) 0.0233 (9) 0.0027 (8) 0.0138 (7)
C8 0.0446 (8) 0.0502 (9) 0.0416 (8) 0.0130 (7) 0.0028 (7) 0.0129 (7)
C9 0.0480 (9) 0.0523 (10) 0.0413 (9) 0.0101 (7) 0.0031 (7) 0.0116 (7)
C10 0.0764 (13) 0.0584 (11) 0.0516 (10) 0.0247 (10) 0.0141 (9) 0.0070 (9)
C11 0.0853 (15) 0.0660 (13) 0.0883 (16) 0.0333 (11) 0.0253 (12) 0.0252 (12)
C12 0.0499 (9) 0.0502 (9) 0.0439 (9) 0.0142 (7) 0.0049 (7) 0.0158 (7)
C13 0.0419 (8) 0.0513 (9) 0.0419 (8) 0.0117 (7) 0.0034 (6) 0.0144 (7)
C14 0.0408 (8) 0.0534 (9) 0.0426 (9) 0.0100 (7) 0.0042 (6) 0.0121 (7)
C15 0.0632 (11) 0.0588 (10) 0.0461 (9) 0.0171 (9) 0.0082 (8) 0.0161 (8)
C16 0.0717 (12) 0.0778 (13) 0.0475 (10) 0.0166 (10) 0.0096 (9) 0.0242 (10)
C17 0.0681 (12) 0.0852 (14) 0.0425 (10) 0.0185 (10) 0.0140 (8) 0.0149 (10)
C18 0.0641 (12) 0.0720 (13) 0.0585 (11) 0.0247 (10) 0.0132 (9) 0.0070 (10)
C19 0.0573 (10) 0.0629 (11) 0.0513 (10) 0.0220 (9) 0.0094 (8) 0.0151 (9)

Geometric parameters (Å, º)

Cl1—C5 1.750 (2) C8—C9 1.469 (2)
O1—C9 1.207 (2) C10—C11 1.490 (3)
O2—C9 1.331 (2) C10—H10A 0.9700
O2—C10 1.452 (2) C10—H10B 0.9700
N1—N2 1.3475 (19) C11—H11A 0.9600
N1—C8 1.362 (2) C11—H11B 0.9600
N1—C1 1.468 (2) C11—H11C 0.9600
N2—C13 1.341 (2) C12—C13 1.399 (2)
C1—C2 1.508 (3) C12—H12 0.9300
C1—H1A 0.9700 C13—C14 1.473 (2)
C1—H1B 0.9700 C14—C19 1.389 (2)
C2—C7 1.384 (2) C14—C15 1.392 (2)
C2—C3 1.389 (3) C15—C16 1.387 (2)
C3—C4 1.377 (3) C15—H15 0.9300
C3—H3 0.9300 C16—C17 1.374 (3)
C4—C5 1.375 (3) C16—H16 0.9300
C4—H4 0.9300 C17—C18 1.377 (3)
C5—C6 1.370 (3) C17—H17 0.9300
C6—C7 1.381 (3) C18—C19 1.384 (3)
C6—H6 0.9300 C18—H18 0.9300
C7—H7 0.9300 C19—H19 0.9300
C8—C12 1.372 (2)
C9—O2—C10 115.81 (13) O2—C10—H10A 110.3
N2—N1—C8 111.51 (13) C11—C10—H10A 110.3
N2—N1—C1 118.60 (14) O2—C10—H10B 110.3
C8—N1—C1 129.64 (14) C11—C10—H10B 110.3
C13—N2—N1 105.49 (13) H10A—C10—H10B 108.6
N1—C1—C2 112.37 (13) C10—C11—H11A 109.5
N1—C1—H1A 109.1 C10—C11—H11B 109.5
C2—C1—H1A 109.1 H11A—C11—H11B 109.5
N1—C1—H1B 109.1 C10—C11—H11C 109.5
C2—C1—H1B 109.1 H11A—C11—H11C 109.5
H1A—C1—H1B 107.9 H11B—C11—H11C 109.5
C7—C2—C3 118.03 (17) C8—C12—C13 105.44 (15)
C7—C2—C1 121.30 (16) C8—C12—H12 127.3
C3—C2—C1 120.66 (15) C13—C12—H12 127.3
C4—C3—C2 121.10 (17) N2—C13—C12 110.70 (14)
C4—C3—H3 119.5 N2—C13—C14 120.36 (14)
C2—C3—H3 119.5 C12—C13—C14 128.93 (15)
C5—C4—C3 119.29 (18) C19—C14—C15 118.53 (16)
C5—C4—H4 120.4 C19—C14—C13 120.92 (15)
C3—C4—H4 120.4 C15—C14—C13 120.54 (15)
C6—C5—C4 121.16 (18) C16—C15—C14 120.64 (17)
C6—C5—Cl1 119.15 (14) C16—C15—H15 119.7
C4—C5—Cl1 119.69 (15) C14—C15—H15 119.7
C5—C6—C7 118.99 (16) C17—C16—C15 120.21 (19)
C5—C6—H6 120.5 C17—C16—H16 119.9
C7—C6—H6 120.5 C15—C16—H16 119.9
C6—C7—C2 121.43 (16) C16—C17—C18 119.58 (18)
C6—C7—H7 119.3 C16—C17—H17 120.2
C2—C7—H7 119.3 C18—C17—H17 120.2
N1—C8—C12 106.85 (14) C17—C18—C19 120.77 (18)
N1—C8—C9 122.81 (14) C17—C18—H18 119.6
C12—C8—C9 130.33 (15) C19—C18—H18 119.6
O1—C9—O2 124.39 (15) C18—C19—C14 120.25 (18)
O1—C9—C8 125.32 (16) C18—C19—H19 119.9
O2—C9—C8 110.29 (14) C14—C19—H19 119.9
O2—C10—C11 107.06 (16)
C8—N1—N2—C13 −0.84 (18) C12—C8—C9—O1 176.62 (18)
C1—N1—N2—C13 −175.68 (14) N1—C8—C9—O2 178.64 (14)
N2—N1—C1—C2 96.41 (17) C12—C8—C9—O2 −3.3 (2)
C8—N1—C1—C2 −77.4 (2) C9—O2—C10—C11 171.93 (16)
N1—C1—C2—C7 126.30 (17) N1—C8—C12—C13 −0.64 (17)
N1—C1—C2—C3 −55.0 (2) C9—C8—C12—C13 −178.92 (16)
C7—C2—C3—C4 0.4 (3) N1—N2—C13—C12 0.41 (18)
C1—C2—C3—C4 −178.33 (18) N1—N2—C13—C14 179.81 (13)
C2—C3—C4—C5 −0.1 (3) C8—C12—C13—N2 0.15 (18)
C3—C4—C5—C6 −0.1 (3) C8—C12—C13—C14 −179.18 (15)
C3—C4—C5—Cl1 179.85 (16) N2—C13—C14—C19 6.6 (2)
C4—C5—C6—C7 −0.1 (3) C12—C13—C14—C19 −174.15 (17)
Cl1—C5—C6—C7 179.98 (13) N2—C13—C14—C15 −172.21 (15)
C5—C6—C7—C2 0.5 (3) C12—C13—C14—C15 7.1 (3)
C3—C2—C7—C6 −0.6 (3) C19—C14—C15—C16 −0.7 (3)
C1—C2—C7—C6 178.15 (15) C13—C14—C15—C16 178.08 (16)
N2—N1—C8—C12 0.95 (18) C14—C15—C16—C17 0.0 (3)
C1—N1—C8—C12 175.06 (16) C15—C16—C17—C18 0.5 (3)
N2—N1—C8—C9 179.39 (14) C16—C17—C18—C19 −0.3 (3)
C1—N1—C8—C9 −6.5 (3) C17—C18—C19—C14 −0.5 (3)
C10—O2—C9—O1 1.1 (3) C15—C14—C19—C18 1.0 (3)
C10—O2—C9—C8 −178.97 (14) C13—C14—C19—C18 −177.83 (16)
N1—C8—C9—O1 −1.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1i 0.93 2.56 3.281 (2) 135
C1—H1B···O1 0.97 2.42 2.921 (2) 111

Symmetry code: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2059).

References

  1. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ge, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313–o1314.
  3. Ge, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070–1076.
  4. Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 42, 197–206.
  5. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Xia, Y., Dong, Z. W., Zhao, B. X., Ge, X., Meng, N., Shin, D. S. & Miao, J. Y. (2007). Bioorg. Med. Chem. 15, 6893–6899. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007428/zj2059sup1.cif

e-68-0o877-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007428/zj2059Isup2.hkl

e-68-0o877-Isup2.hkl (147.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007428/zj2059Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES