Abstract
In the title compound, C16H16ClNO2S2, the piperidine ring is in a chair conformation. In the coumarin ring system, the dihedral angle between the benzene and pyran rings is 3.5 (1)°. In the crystal, a weak C—H⋯O hydrogen bond links molecules into chains along [001]. In addition, π–π stacking interactions are present involving the benzene and pyran rings, with a centroid-to-centroid distance of 3.712 (2) Å. The crystal studied is a nonmerohedral twin with refined components 0.221 (1) and 0.779 (1).
Related literature
For structures and properties of coumarins, see: Kulkarni et al. (2006 ▶); Jones et al. (1985 ▶); Trenor et al. (2004 ▶); Hung et al. (2007 ▶). For the applications of dithiocarbamate compounds, see: Bergendorff & Hansson (2002 ▶); Huang et al. (2009 ▶). For standard bond lengths, see: Allen et al. (1987 ▶). For ring conformations, see: Duax & Norton (1975 ▶). For the synthesis of the title compound, see: Shastri et al. (2004 ▶); Vasilliev & Polackov (2000 ▶).
Experimental
Crystal data
C16H16ClNO2S2
M r = 353.87
Monoclinic,
a = 4.9427 (3) Å
b = 11.5010 (6) Å
c = 14.0006 (8) Å
β = 90.271 (6)°
V = 795.87 (8) Å3
Z = 2
Mo Kα radiation
μ = 0.51 mm−1
T = 293 K
0.3 × 0.2 × 0.2 mm
Data collection
Oxford Xcalibur Sapphire3 diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010 ▶) T min = 0.886, T max = 1.000
13944 measured reflections
2801 independent reflections
2678 reflections with I > 2σ(I)
R int = 0.047
Refinement
R[F 2 > 2σ(F 2)] = 0.035
wR(F 2) = 0.082
S = 1.04
2801 reflections
200 parameters
2 restraints
H-atom parameters constrained
Δρmax = 0.14 e Å−3
Δρmin = −0.18 e Å−3
Absolute structure: Flack (1983 ▶), with 1394 Friedel pairs
Flack parameter: −0.01 (10)
Data collection: CrysAlis PRO (Oxford Diffraction, 2010 ▶); cell refinement: CrysAlis PRO ; data reduction: CrysAlis RED (Oxford Diffraction, 2010 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007933/lh5420sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007933/lh5420Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812007933/lh5420Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C6—H6⋯O2i | 0.93 | 2.41 | 3.167 (5) | 139 |
Symmetry code: (i) .
Acknowledgments
KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities. RK acknowledges the Department of Science and Technology for the single-crystal X-ray diffractometer, sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.
supplementary crystallographic information
Comment
Coumarins are an important class of heterocycles, which are widespread in the plant kingdom and have been extensively reported. Coumarin derivatives with various substituents at the C-4 position have revealed potential as anti-microbial, anti-viral, anti-oxidant, anti-inflammatory and anti-cancer agents (Kulkarni et al., 2006). They have also found a place and subsequent use in laser dyes, non-linear optical chromophores, fluorescent whiteners, fluorescent probes and solar energy collectors due to their outstanding optical properties (Jones et al., 1985; Trenor et al., 2004; Hung et al., 2007). Dithiocarbamate (DTC) derivatives are valuable compounds due to their interesting chemistry and utility. These compounds have shown wide applications as pesticides, fungicides in agriculture, sulfur vulcanization and anti-cancer agents (Bergendorff & Hansson, 2002; Huang et al., 2009). In our work, we have been able to link a DTC moiety at C-4 methylene carbon and it was a thought of considerable interest to study the effect of this moiety on the total solid-state conformation of the molecule. A new series of piperidine-1-dithiocarbomate derivatives of 4-substituted coumarin was synthesized in a single step and screened for antimicrobial, anti-diabetic, DNA binding and DNA cleavage activity. In this paper we report the crystal structure of (7-Chloro-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithioate (I).
The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges. The pyridine ring adopts a normal chair conformation (asymmetry parameters: ΔCs(C15—N1) = 0.94; ΔC2(C16—C15) = 2.5 (Duax & Norton, 1975). The dihedral angle bewteen pyran and benzene rings in the coumarin moiety 3.5 (1)°. In the crystal, weak C—H···O hydrogen bonds link molecules along [001] (Fig. 2). In addition, π–π interactions between the pyran ring at (x, y, z) and the benzene ring at (1 + x, y, z) are present [centroid separation = 3.712 (2) Å, interplanar spacing = 3.407 Å and centroid shift = 1.47 Å].
Experimental
4-Bromomethyl coumarin required for the synthesis of the target molecule was synthesized according to an already reported procedure (Shastri et al., 2004) involving the Pechmann cyclization of phenols with 4-Bromoethyl acetoacetate and the potassium salt of piperidine-1-dithiocarbomate was synthesized according to the procedure reported (Vasilliev & Polackov, 2000).
A mixture of 2.73 g (0.01 mol) of 7-chloro-4-bromomethyl coumarin and 1.99 g (0.01 mol) of potassium salt of piperidine-1-dithiocarbomate in 30 ml dry alcohol was stirred for 12 h at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the solid was extracted twice with MDC–water mixture. The organic solvent was dried over CaCl2, the solvent evaporated and recrystallized from ethanol–chloroform. A slow evaporation technique was used to grow crystals suitable for diffraction studies in an ethanol–chloroform mixture. Yield = 89%, m.p. 407–409 K. IR (KBr): 1720 cm-1 (C═O), 1430 cm-1 (C═S), 849 cm-1 (C—N), 771 cm-1 (C—Cl). GCMS: m/e: 353.03. 1H NMR (300 MHz, CdCl3, δ, p.p.m.): 2.81 (s, 4H, C13 & C17—H), 2.79 (s, 6H, C14, C16 & C16—H), 4.72 (s, 2H, C4—CH2), 6.21 (s, 1H, C3—H), 7.18 (d, 2H, C6 & C8—H), 7.47 (d, 1H C5—H). Elemental analysis: C, 54.27; H, 4.54; Cl, 10.00; N, 3.92; O, 9.01; S, 18.09.
Refinement
All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). The crystal studied is a non-merohedral twin with refined components 0.221 (1) and 0.779 (1) and twin law 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 -1.00.
Figures
Fig. 1.
The molecular structure of the title compound. Ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
The packing arrangement of molecules viewed along the a axis. The broken lines show the intermolecular C—H···O interactions.
Crystal data
C16H16ClNO2S2 | F(000) = 368 |
Mr = 353.87 | Dx = 1.477 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: p -2yc | Cell parameters from 7572 reflections |
a = 4.9427 (3) Å | θ = 3.4–29.0° |
b = 11.5010 (6) Å | µ = 0.51 mm−1 |
c = 14.0006 (8) Å | T = 293 K |
β = 90.271 (6)° | Block, white |
V = 795.87 (8) Å3 | 0.3 × 0.2 × 0.2 mm |
Z = 2 |
Data collection
Oxford Xcalibur Sapphire3 diffractometer | 2801 independent reflections |
Radiation source: fine-focus sealed tube | 2678 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 25.0°, θmin = 3.4° |
ω scans | h = −5→5 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −13→13 |
Tmin = 0.886, Tmax = 1.000 | l = −16→16 |
13944 measured reflections |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0367P)2 + 0.3317P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2801 reflections | Δρmax = 0.14 e Å−3 |
200 parameters | Δρmin = −0.18 e Å−3 |
2 restraints | Absolute structure: Flack (1983), with 1394 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Flack parameter: −0.01 (10) |
Special details
Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
S1 | 0.1990 (2) | 0.77560 (7) | 0.36977 (7) | 0.0421 (3) | |
S2 | 0.4685 (3) | 0.60142 (9) | 0.24062 (9) | 0.0525 (3) | |
Cl1 | −0.4816 (2) | 1.27262 (9) | 0.15209 (9) | 0.0577 (3) | |
O1 | 0.2148 (6) | 0.9922 (2) | 0.03114 (17) | 0.0429 (7) | |
C2 | 0.4260 (9) | 0.9155 (3) | 0.0384 (3) | 0.0431 (10) | |
O2 | 0.5440 (8) | 0.8931 (3) | −0.03402 (19) | 0.0583 (9) | |
C3 | 0.4925 (9) | 0.8712 (3) | 0.1330 (3) | 0.0373 (9) | |
H3 | 0.6290 | 0.8161 | 0.1393 | 0.045* | |
C4 | 0.3622 (8) | 0.9077 (3) | 0.2120 (2) | 0.0328 (8) | |
C10 | 0.1525 (8) | 0.9952 (3) | 0.2026 (2) | 0.0315 (8) | |
C5 | 0.0142 (9) | 1.0460 (3) | 0.2788 (2) | 0.0362 (8) | |
H5 | 0.0531 | 1.0225 | 0.3410 | 0.043* | |
C6 | −0.1802 (9) | 1.1309 (3) | 0.2633 (3) | 0.0405 (10) | |
H6 | −0.2696 | 1.1644 | 0.3147 | 0.049* | |
C7 | −0.2409 (8) | 1.1657 (3) | 0.1707 (3) | 0.0372 (9) | |
C8 | −0.1117 (9) | 1.1168 (3) | 0.0933 (3) | 0.0385 (9) | |
H8 | −0.1538 | 1.1396 | 0.0313 | 0.046* | |
C9 | 0.0813 (8) | 1.0334 (3) | 0.1108 (2) | 0.0354 (9) | |
C11 | 0.4485 (9) | 0.8620 (3) | 0.3081 (3) | 0.0382 (9) | |
H11B | 0.4967 | 0.9276 | 0.3484 | 0.046* | |
H11A | 0.6100 | 0.8153 | 0.2998 | 0.046* | |
C12 | 0.2473 (9) | 0.6313 (3) | 0.3254 (3) | 0.0378 (9) | |
N1 | 0.0894 (7) | 0.5538 (3) | 0.3692 (3) | 0.0487 (9) | |
C17 | −0.0804 (10) | 0.5754 (4) | 0.4518 (4) | 0.0538 (12) | |
H17A | −0.2672 | 0.5577 | 0.4360 | 0.065* | |
H17B | −0.0697 | 0.6569 | 0.4694 | 0.065* | |
C16 | 0.0100 (13) | 0.5010 (4) | 0.5353 (4) | 0.0637 (12) | |
H16A | −0.1126 | 0.5127 | 0.5884 | 0.076* | |
H16B | 0.1891 | 0.5253 | 0.5557 | 0.076* | |
C15 | 0.0164 (14) | 0.3726 (4) | 0.5096 (4) | 0.0732 (16) | |
H15A | −0.1668 | 0.3446 | 0.4997 | 0.088* | |
H15B | 0.0962 | 0.3287 | 0.5618 | 0.088* | |
C14 | 0.1810 (12) | 0.3540 (4) | 0.4192 (4) | 0.0719 (17) | |
H14B | 0.3697 | 0.3712 | 0.4323 | 0.086* | |
H14A | 0.1684 | 0.2731 | 0.4000 | 0.086* | |
C13 | 0.0825 (11) | 0.4303 (3) | 0.3383 (4) | 0.0609 (14) | |
H13A | 0.1971 | 0.4198 | 0.2829 | 0.073* | |
H13B | −0.1008 | 0.4087 | 0.3207 | 0.073* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0626 (7) | 0.0293 (5) | 0.0344 (5) | 0.0036 (5) | 0.0134 (5) | 0.0018 (4) |
S2 | 0.0701 (7) | 0.0446 (6) | 0.0429 (5) | 0.0132 (5) | 0.0119 (6) | −0.0038 (5) |
Cl1 | 0.0600 (7) | 0.0446 (6) | 0.0686 (8) | 0.0118 (5) | 0.0082 (6) | 0.0067 (5) |
O1 | 0.0627 (18) | 0.0443 (16) | 0.0218 (12) | 0.0010 (14) | 0.0080 (13) | −0.0001 (11) |
C2 | 0.064 (3) | 0.0350 (19) | 0.031 (2) | −0.003 (2) | 0.0083 (19) | −0.0062 (16) |
O2 | 0.083 (2) | 0.0600 (19) | 0.0322 (16) | 0.0051 (18) | 0.0230 (17) | −0.0058 (13) |
C3 | 0.048 (2) | 0.0316 (18) | 0.0324 (19) | −0.0030 (18) | 0.0071 (19) | −0.0001 (15) |
C4 | 0.041 (2) | 0.0289 (18) | 0.0287 (19) | −0.0076 (15) | 0.0040 (15) | 0.0011 (14) |
C10 | 0.040 (2) | 0.0283 (18) | 0.0258 (19) | −0.0056 (16) | 0.0035 (15) | 0.0010 (14) |
C5 | 0.050 (2) | 0.0362 (19) | 0.0224 (17) | −0.0096 (19) | 0.0046 (16) | −0.0007 (14) |
C6 | 0.053 (3) | 0.034 (2) | 0.035 (2) | −0.0039 (18) | 0.0123 (18) | −0.0036 (16) |
C7 | 0.040 (2) | 0.0297 (19) | 0.042 (2) | −0.0062 (16) | 0.0032 (18) | 0.0033 (16) |
C8 | 0.051 (3) | 0.034 (2) | 0.0305 (19) | −0.0055 (18) | 0.0035 (18) | 0.0056 (16) |
C9 | 0.050 (2) | 0.0311 (18) | 0.0255 (18) | −0.0070 (17) | 0.0069 (16) | −0.0014 (14) |
C11 | 0.050 (3) | 0.0372 (18) | 0.0272 (19) | 0.0007 (18) | 0.0024 (17) | −0.0029 (16) |
C12 | 0.049 (2) | 0.034 (2) | 0.0302 (19) | 0.0047 (18) | −0.0042 (18) | 0.0013 (15) |
N1 | 0.061 (2) | 0.0286 (16) | 0.056 (2) | 0.0022 (15) | 0.006 (2) | 0.0004 (15) |
C17 | 0.060 (3) | 0.037 (2) | 0.064 (3) | −0.001 (2) | 0.013 (2) | 0.009 (2) |
C16 | 0.076 (3) | 0.055 (3) | 0.060 (3) | −0.005 (3) | −0.005 (3) | 0.012 (2) |
C15 | 0.087 (4) | 0.044 (2) | 0.088 (4) | −0.011 (3) | −0.029 (4) | 0.023 (3) |
C14 | 0.070 (4) | 0.034 (2) | 0.112 (5) | 0.001 (2) | −0.028 (4) | −0.003 (3) |
C13 | 0.077 (4) | 0.031 (2) | 0.075 (3) | −0.003 (2) | 0.006 (3) | −0.008 (2) |
Geometric parameters (Å, º)
S1—C12 | 1.788 (4) | C8—H8 | 0.9300 |
S1—C11 | 1.807 (4) | C11—H11B | 0.9700 |
S2—C12 | 1.654 (4) | C11—H11A | 0.9700 |
Cl1—C7 | 1.730 (4) | C12—N1 | 1.336 (5) |
O1—C2 | 1.371 (5) | N1—C17 | 1.454 (5) |
O1—C9 | 1.382 (4) | N1—C13 | 1.485 (5) |
C2—O2 | 1.200 (4) | C17—C16 | 1.514 (6) |
C2—C3 | 1.456 (5) | C17—H17A | 0.9700 |
C3—C4 | 1.349 (5) | C17—H17B | 0.9700 |
C3—H3 | 0.9300 | C16—C15 | 1.521 (7) |
C4—C10 | 1.450 (5) | C16—H16A | 0.9700 |
C4—C11 | 1.505 (5) | C16—H16B | 0.9700 |
C10—C5 | 1.398 (5) | C15—C14 | 1.524 (8) |
C10—C9 | 1.402 (5) | C15—H15A | 0.9700 |
C5—C6 | 1.386 (6) | C15—H15B | 0.9700 |
C5—H5 | 0.9300 | C14—C13 | 1.511 (7) |
C6—C7 | 1.388 (5) | C14—H14B | 0.9700 |
C6—H6 | 0.9300 | C14—H14A | 0.9700 |
C7—C8 | 1.380 (6) | C13—H13A | 0.9700 |
C8—C9 | 1.374 (6) | C13—H13B | 0.9700 |
C12—S1—C11 | 104.60 (18) | N1—C12—S1 | 112.4 (3) |
C2—O1—C9 | 121.8 (3) | S2—C12—S1 | 122.2 (2) |
O2—C2—O1 | 116.7 (4) | C12—N1—C17 | 126.3 (3) |
O2—C2—C3 | 125.9 (4) | C12—N1—C13 | 121.2 (4) |
O1—C2—C3 | 117.5 (3) | C17—N1—C13 | 112.5 (4) |
C4—C3—C2 | 122.1 (4) | N1—C17—C16 | 110.4 (4) |
C4—C3—H3 | 119.0 | N1—C17—H17A | 109.6 |
C2—C3—H3 | 119.0 | C16—C17—H17A | 109.6 |
C3—C4—C10 | 119.1 (3) | N1—C17—H17B | 109.6 |
C3—C4—C11 | 119.3 (4) | C16—C17—H17B | 109.6 |
C10—C4—C11 | 121.5 (3) | H17A—C17—H17B | 108.1 |
C5—C10—C9 | 116.6 (3) | C17—C16—C15 | 111.8 (5) |
C5—C10—C4 | 125.0 (3) | C17—C16—H16A | 109.2 |
C9—C10—C4 | 118.5 (3) | C15—C16—H16A | 109.2 |
C6—C5—C10 | 121.0 (3) | C17—C16—H16B | 109.2 |
C6—C5—H5 | 119.5 | C15—C16—H16B | 109.2 |
C10—C5—H5 | 119.5 | H16A—C16—H16B | 107.9 |
C5—C6—C7 | 119.8 (4) | C16—C15—C14 | 110.2 (4) |
C5—C6—H6 | 120.1 | C16—C15—H15A | 109.6 |
C7—C6—H6 | 120.1 | C14—C15—H15A | 109.6 |
C8—C7—C6 | 121.1 (4) | C16—C15—H15B | 109.6 |
C8—C7—Cl1 | 119.5 (3) | C14—C15—H15B | 109.6 |
C6—C7—Cl1 | 119.4 (3) | H15A—C15—H15B | 108.1 |
C9—C8—C7 | 117.9 (4) | C13—C14—C15 | 111.7 (5) |
C9—C8—H8 | 121.0 | C13—C14—H14B | 109.3 |
C7—C8—H8 | 121.0 | C15—C14—H14B | 109.3 |
C8—C9—O1 | 115.4 (3) | C13—C14—H14A | 109.3 |
C8—C9—C10 | 123.6 (3) | C15—C14—H14A | 109.3 |
O1—C9—C10 | 120.9 (3) | H14B—C14—H14A | 107.9 |
C4—C11—S1 | 115.4 (3) | N1—C13—C14 | 109.3 (4) |
C4—C11—H11B | 108.4 | N1—C13—H13A | 109.8 |
S1—C11—H11B | 108.4 | C14—C13—H13A | 109.8 |
C4—C11—H11A | 108.4 | N1—C13—H13B | 109.8 |
S1—C11—H11A | 108.4 | C14—C13—H13B | 109.8 |
H11B—C11—H11A | 107.5 | H13A—C13—H13B | 108.3 |
N1—C12—S2 | 125.5 (3) | ||
C9—O1—C2—O2 | −173.5 (4) | C5—C10—C9—C8 | 0.5 (5) |
C9—O1—C2—C3 | 4.7 (5) | C4—C10—C9—C8 | −179.1 (4) |
O2—C2—C3—C4 | 174.8 (4) | C5—C10—C9—O1 | 177.1 (3) |
O1—C2—C3—C4 | −3.2 (6) | C4—C10—C9—O1 | −2.5 (5) |
C2—C3—C4—C10 | −1.1 (6) | C3—C4—C11—S1 | −115.6 (4) |
C2—C3—C4—C11 | −177.6 (4) | C10—C4—C11—S1 | 68.0 (4) |
C3—C4—C10—C5 | −175.7 (4) | C12—S1—C11—C4 | 86.3 (3) |
C11—C4—C10—C5 | 0.7 (5) | C11—S1—C12—N1 | 175.5 (3) |
C3—C4—C10—C9 | 3.9 (5) | C11—S1—C12—S2 | −3.6 (3) |
C11—C4—C10—C9 | −179.7 (3) | S2—C12—N1—C17 | 171.5 (4) |
C9—C10—C5—C6 | −0.9 (5) | S1—C12—N1—C17 | −7.6 (5) |
C4—C10—C5—C6 | 178.7 (4) | S2—C12—N1—C13 | −5.4 (6) |
C10—C5—C6—C7 | 0.5 (6) | S1—C12—N1—C13 | 175.4 (3) |
C5—C6—C7—C8 | 0.3 (6) | C12—N1—C17—C16 | −117.9 (5) |
C5—C6—C7—Cl1 | −179.4 (3) | C13—N1—C17—C16 | 59.3 (5) |
C6—C7—C8—C9 | −0.7 (6) | N1—C17—C16—C15 | −55.2 (6) |
Cl1—C7—C8—C9 | 179.0 (3) | C17—C16—C15—C14 | 52.2 (7) |
C7—C8—C9—O1 | −176.5 (3) | C16—C15—C14—C13 | −53.3 (6) |
C7—C8—C9—C10 | 0.3 (6) | C12—N1—C13—C14 | 117.5 (5) |
C2—O1—C9—C8 | 175.0 (3) | C17—N1—C13—C14 | −59.8 (6) |
C2—O1—C9—C10 | −1.9 (5) | C15—C14—C13—N1 | 56.3 (6) |
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17B···S1 | 0.97 | 2.36 | 2.923 (5) | 116 |
C13—H13A···S2 | 0.97 | 2.55 | 3.067 (4) | 113 |
C6—H6···O2i | 0.93 | 2.41 | 3.167 (5) | 139 |
Symmetry code: (i) x−1, −y+2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5420).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bergendorff, O. & Hansson, C. (2002). J. Agric. Food Chem. 50, 1092–1096. [DOI] [PubMed]
- Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Huang, W., Ding, Y., Miao, Y., Liu, M.-Z., Li, Y. & Yang, G.-F. (2009). Eur. J. Med. Chem. 44, 3687–3696. [DOI] [PubMed]
- Hung, T. T., Lu, Y. J., Liao, W. Y. & Huang, C. L. (2007). IEEE Trans. Magn. 43, 867–869.
- Jones, G., Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). J. Phys. Chem. 89, 294–300.
- Kulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795–2818. [DOI] [PubMed]
- Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Shastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416–2422.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Trenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. (2004). Chem. Rev. 104, 3059–3077. [DOI] [PubMed]
- Vasilliev, A. N. & Polackov, A. D. (2000). Molecules, 5, 1014–1017.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007933/lh5420sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007933/lh5420Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812007933/lh5420Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report