Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 29;68(Pt 3):o878–o879. doi: 10.1107/S1600536812007933

(7-Chloro-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithio­ate

K Mahesh Kumar a, Dalbir Kour b, Kamini Kapoor b, N M Mahabaleshwaraiah a, O Kotresh a, Vivek K Gupta b, Rajni Kant b,*
PMCID: PMC3297927  PMID: 22412730

Abstract

In the title compound, C16H16ClNO2S2, the piperidine ring is in a chair conformation. In the coumarin ring system, the dihedral angle between the benzene and pyran rings is 3.5 (1)°. In the crystal, a weak C—H⋯O hydrogen bond links mol­ecules into chains along [001]. In addition, π–π stacking inter­actions are present involving the benzene and pyran rings, with a centroid-to-centroid distance of 3.712 (2) Å. The crystal studied is a nonmerohedral twin with refined components 0.221 (1) and 0.779 (1).

Related literature  

For structures and properties of coumarins, see: Kulkarni et al. (2006); Jones et al. (1985); Trenor et al. (2004); Hung et al. (2007). For the applications of dithio­carbamate compounds, see: Bergendorff & Hansson (2002); Huang et al. (2009). For standard bond lengths, see: Allen et al. (1987). For ring conformations, see: Duax & Norton (1975). For the synthesis of the title compound, see: Shastri et al. (2004); Vasilliev & Polackov (2000).graphic file with name e-68-0o878-scheme1.jpg

Experimental  

Crystal data  

  • C16H16ClNO2S2

  • M r = 353.87

  • Monoclinic, Inline graphic

  • a = 4.9427 (3) Å

  • b = 11.5010 (6) Å

  • c = 14.0006 (8) Å

  • β = 90.271 (6)°

  • V = 795.87 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection  

  • Oxford Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.886, T max = 1.000

  • 13944 measured reflections

  • 2801 independent reflections

  • 2678 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.082

  • S = 1.04

  • 2801 reflections

  • 200 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983), with 1394 Friedel pairs

  • Flack parameter: −0.01 (10)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO ; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007933/lh5420sup1.cif

e-68-0o878-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007933/lh5420Isup2.hkl

e-68-0o878-Isup2.hkl (134.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007933/lh5420Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.41 3.167 (5) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities. RK acknowledges the Department of Science and Technology for the single-crystal X-ray diffractometer, sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

supplementary crystallographic information

Comment

Coumarins are an important class of heterocycles, which are widespread in the plant kingdom and have been extensively reported. Coumarin derivatives with various substituents at the C-4 position have revealed potential as anti-microbial, anti-viral, anti-oxidant, anti-inflammatory and anti-cancer agents (Kulkarni et al., 2006). They have also found a place and subsequent use in laser dyes, non-linear optical chromophores, fluorescent whiteners, fluorescent probes and solar energy collectors due to their outstanding optical properties (Jones et al., 1985; Trenor et al., 2004; Hung et al., 2007). Dithiocarbamate (DTC) derivatives are valuable compounds due to their interesting chemistry and utility. These compounds have shown wide applications as pesticides, fungicides in agriculture, sulfur vulcanization and anti-cancer agents (Bergendorff & Hansson, 2002; Huang et al., 2009). In our work, we have been able to link a DTC moiety at C-4 methylene carbon and it was a thought of considerable interest to study the effect of this moiety on the total solid-state conformation of the molecule. A new series of piperidine-1-dithiocarbomate derivatives of 4-substituted coumarin was synthesized in a single step and screened for antimicrobial, anti-diabetic, DNA binding and DNA cleavage activity. In this paper we report the crystal structure of (7-Chloro-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithioate (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges. The pyridine ring adopts a normal chair conformation (asymmetry parameters: ΔCs(C15—N1) = 0.94; ΔC2(C16—C15) = 2.5 (Duax & Norton, 1975). The dihedral angle bewteen pyran and benzene rings in the coumarin moiety 3.5 (1)°. In the crystal, weak C—H···O hydrogen bonds link molecules along [001] (Fig. 2). In addition, π–π interactions between the pyran ring at (x, y, z) and the benzene ring at (1 + x, y, z) are present [centroid separation = 3.712 (2) Å, interplanar spacing = 3.407 Å and centroid shift = 1.47 Å].

Experimental

4-Bromomethyl coumarin required for the synthesis of the target molecule was synthesized according to an already reported procedure (Shastri et al., 2004) involving the Pechmann cyclization of phenols with 4-Bromoethyl acetoacetate and the potassium salt of piperidine-1-dithiocarbomate was synthesized according to the procedure reported (Vasilliev & Polackov, 2000).

A mixture of 2.73 g (0.01 mol) of 7-chloro-4-bromomethyl coumarin and 1.99 g (0.01 mol) of potassium salt of piperidine-1-dithiocarbomate in 30 ml dry alcohol was stirred for 12 h at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the solid was extracted twice with MDC–water mixture. The organic solvent was dried over CaCl2, the solvent evaporated and recrystallized from ethanol–chloroform. A slow evaporation technique was used to grow crystals suitable for diffraction studies in an ethanol–chloroform mixture. Yield = 89%, m.p. 407–409 K. IR (KBr): 1720 cm-1 (C═O), 1430 cm-1 (C═S), 849 cm-1 (C—N), 771 cm-1 (C—Cl). GCMS: m/e: 353.03. 1H NMR (300 MHz, CdCl3, δ, p.p.m.): 2.81 (s, 4H, C13 & C17—H), 2.79 (s, 6H, C14, C16 & C16—H), 4.72 (s, 2H, C4—CH2), 6.21 (s, 1H, C3—H), 7.18 (d, 2H, C6 & C8—H), 7.47 (d, 1H C5—H). Elemental analysis: C, 54.27; H, 4.54; Cl, 10.00; N, 3.92; O, 9.01; S, 18.09.

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). The crystal studied is a non-merohedral twin with refined components 0.221 (1) and 0.779 (1) and twin law 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 -1.00.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed along the a axis. The broken lines show the intermolecular C—H···O interactions.

Crystal data

C16H16ClNO2S2 F(000) = 368
Mr = 353.87 Dx = 1.477 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p -2yc Cell parameters from 7572 reflections
a = 4.9427 (3) Å θ = 3.4–29.0°
b = 11.5010 (6) Å µ = 0.51 mm1
c = 14.0006 (8) Å T = 293 K
β = 90.271 (6)° Block, white
V = 795.87 (8) Å3 0.3 × 0.2 × 0.2 mm
Z = 2

Data collection

Oxford Xcalibur Sapphire3 diffractometer 2801 independent reflections
Radiation source: fine-focus sealed tube 2678 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
Detector resolution: 16.1049 pixels mm-1 θmax = 25.0°, θmin = 3.4°
ω scans h = −5→5
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −13→13
Tmin = 0.886, Tmax = 1.000 l = −16→16
13944 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.3317P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2801 reflections Δρmax = 0.14 e Å3
200 parameters Δρmin = −0.18 e Å3
2 restraints Absolute structure: Flack (1983), with 1394 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.01 (10)

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.1990 (2) 0.77560 (7) 0.36977 (7) 0.0421 (3)
S2 0.4685 (3) 0.60142 (9) 0.24062 (9) 0.0525 (3)
Cl1 −0.4816 (2) 1.27262 (9) 0.15209 (9) 0.0577 (3)
O1 0.2148 (6) 0.9922 (2) 0.03114 (17) 0.0429 (7)
C2 0.4260 (9) 0.9155 (3) 0.0384 (3) 0.0431 (10)
O2 0.5440 (8) 0.8931 (3) −0.03402 (19) 0.0583 (9)
C3 0.4925 (9) 0.8712 (3) 0.1330 (3) 0.0373 (9)
H3 0.6290 0.8161 0.1393 0.045*
C4 0.3622 (8) 0.9077 (3) 0.2120 (2) 0.0328 (8)
C10 0.1525 (8) 0.9952 (3) 0.2026 (2) 0.0315 (8)
C5 0.0142 (9) 1.0460 (3) 0.2788 (2) 0.0362 (8)
H5 0.0531 1.0225 0.3410 0.043*
C6 −0.1802 (9) 1.1309 (3) 0.2633 (3) 0.0405 (10)
H6 −0.2696 1.1644 0.3147 0.049*
C7 −0.2409 (8) 1.1657 (3) 0.1707 (3) 0.0372 (9)
C8 −0.1117 (9) 1.1168 (3) 0.0933 (3) 0.0385 (9)
H8 −0.1538 1.1396 0.0313 0.046*
C9 0.0813 (8) 1.0334 (3) 0.1108 (2) 0.0354 (9)
C11 0.4485 (9) 0.8620 (3) 0.3081 (3) 0.0382 (9)
H11B 0.4967 0.9276 0.3484 0.046*
H11A 0.6100 0.8153 0.2998 0.046*
C12 0.2473 (9) 0.6313 (3) 0.3254 (3) 0.0378 (9)
N1 0.0894 (7) 0.5538 (3) 0.3692 (3) 0.0487 (9)
C17 −0.0804 (10) 0.5754 (4) 0.4518 (4) 0.0538 (12)
H17A −0.2672 0.5577 0.4360 0.065*
H17B −0.0697 0.6569 0.4694 0.065*
C16 0.0100 (13) 0.5010 (4) 0.5353 (4) 0.0637 (12)
H16A −0.1126 0.5127 0.5884 0.076*
H16B 0.1891 0.5253 0.5557 0.076*
C15 0.0164 (14) 0.3726 (4) 0.5096 (4) 0.0732 (16)
H15A −0.1668 0.3446 0.4997 0.088*
H15B 0.0962 0.3287 0.5618 0.088*
C14 0.1810 (12) 0.3540 (4) 0.4192 (4) 0.0719 (17)
H14B 0.3697 0.3712 0.4323 0.086*
H14A 0.1684 0.2731 0.4000 0.086*
C13 0.0825 (11) 0.4303 (3) 0.3383 (4) 0.0609 (14)
H13A 0.1971 0.4198 0.2829 0.073*
H13B −0.1008 0.4087 0.3207 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0626 (7) 0.0293 (5) 0.0344 (5) 0.0036 (5) 0.0134 (5) 0.0018 (4)
S2 0.0701 (7) 0.0446 (6) 0.0429 (5) 0.0132 (5) 0.0119 (6) −0.0038 (5)
Cl1 0.0600 (7) 0.0446 (6) 0.0686 (8) 0.0118 (5) 0.0082 (6) 0.0067 (5)
O1 0.0627 (18) 0.0443 (16) 0.0218 (12) 0.0010 (14) 0.0080 (13) −0.0001 (11)
C2 0.064 (3) 0.0350 (19) 0.031 (2) −0.003 (2) 0.0083 (19) −0.0062 (16)
O2 0.083 (2) 0.0600 (19) 0.0322 (16) 0.0051 (18) 0.0230 (17) −0.0058 (13)
C3 0.048 (2) 0.0316 (18) 0.0324 (19) −0.0030 (18) 0.0071 (19) −0.0001 (15)
C4 0.041 (2) 0.0289 (18) 0.0287 (19) −0.0076 (15) 0.0040 (15) 0.0011 (14)
C10 0.040 (2) 0.0283 (18) 0.0258 (19) −0.0056 (16) 0.0035 (15) 0.0010 (14)
C5 0.050 (2) 0.0362 (19) 0.0224 (17) −0.0096 (19) 0.0046 (16) −0.0007 (14)
C6 0.053 (3) 0.034 (2) 0.035 (2) −0.0039 (18) 0.0123 (18) −0.0036 (16)
C7 0.040 (2) 0.0297 (19) 0.042 (2) −0.0062 (16) 0.0032 (18) 0.0033 (16)
C8 0.051 (3) 0.034 (2) 0.0305 (19) −0.0055 (18) 0.0035 (18) 0.0056 (16)
C9 0.050 (2) 0.0311 (18) 0.0255 (18) −0.0070 (17) 0.0069 (16) −0.0014 (14)
C11 0.050 (3) 0.0372 (18) 0.0272 (19) 0.0007 (18) 0.0024 (17) −0.0029 (16)
C12 0.049 (2) 0.034 (2) 0.0302 (19) 0.0047 (18) −0.0042 (18) 0.0013 (15)
N1 0.061 (2) 0.0286 (16) 0.056 (2) 0.0022 (15) 0.006 (2) 0.0004 (15)
C17 0.060 (3) 0.037 (2) 0.064 (3) −0.001 (2) 0.013 (2) 0.009 (2)
C16 0.076 (3) 0.055 (3) 0.060 (3) −0.005 (3) −0.005 (3) 0.012 (2)
C15 0.087 (4) 0.044 (2) 0.088 (4) −0.011 (3) −0.029 (4) 0.023 (3)
C14 0.070 (4) 0.034 (2) 0.112 (5) 0.001 (2) −0.028 (4) −0.003 (3)
C13 0.077 (4) 0.031 (2) 0.075 (3) −0.003 (2) 0.006 (3) −0.008 (2)

Geometric parameters (Å, º)

S1—C12 1.788 (4) C8—H8 0.9300
S1—C11 1.807 (4) C11—H11B 0.9700
S2—C12 1.654 (4) C11—H11A 0.9700
Cl1—C7 1.730 (4) C12—N1 1.336 (5)
O1—C2 1.371 (5) N1—C17 1.454 (5)
O1—C9 1.382 (4) N1—C13 1.485 (5)
C2—O2 1.200 (4) C17—C16 1.514 (6)
C2—C3 1.456 (5) C17—H17A 0.9700
C3—C4 1.349 (5) C17—H17B 0.9700
C3—H3 0.9300 C16—C15 1.521 (7)
C4—C10 1.450 (5) C16—H16A 0.9700
C4—C11 1.505 (5) C16—H16B 0.9700
C10—C5 1.398 (5) C15—C14 1.524 (8)
C10—C9 1.402 (5) C15—H15A 0.9700
C5—C6 1.386 (6) C15—H15B 0.9700
C5—H5 0.9300 C14—C13 1.511 (7)
C6—C7 1.388 (5) C14—H14B 0.9700
C6—H6 0.9300 C14—H14A 0.9700
C7—C8 1.380 (6) C13—H13A 0.9700
C8—C9 1.374 (6) C13—H13B 0.9700
C12—S1—C11 104.60 (18) N1—C12—S1 112.4 (3)
C2—O1—C9 121.8 (3) S2—C12—S1 122.2 (2)
O2—C2—O1 116.7 (4) C12—N1—C17 126.3 (3)
O2—C2—C3 125.9 (4) C12—N1—C13 121.2 (4)
O1—C2—C3 117.5 (3) C17—N1—C13 112.5 (4)
C4—C3—C2 122.1 (4) N1—C17—C16 110.4 (4)
C4—C3—H3 119.0 N1—C17—H17A 109.6
C2—C3—H3 119.0 C16—C17—H17A 109.6
C3—C4—C10 119.1 (3) N1—C17—H17B 109.6
C3—C4—C11 119.3 (4) C16—C17—H17B 109.6
C10—C4—C11 121.5 (3) H17A—C17—H17B 108.1
C5—C10—C9 116.6 (3) C17—C16—C15 111.8 (5)
C5—C10—C4 125.0 (3) C17—C16—H16A 109.2
C9—C10—C4 118.5 (3) C15—C16—H16A 109.2
C6—C5—C10 121.0 (3) C17—C16—H16B 109.2
C6—C5—H5 119.5 C15—C16—H16B 109.2
C10—C5—H5 119.5 H16A—C16—H16B 107.9
C5—C6—C7 119.8 (4) C16—C15—C14 110.2 (4)
C5—C6—H6 120.1 C16—C15—H15A 109.6
C7—C6—H6 120.1 C14—C15—H15A 109.6
C8—C7—C6 121.1 (4) C16—C15—H15B 109.6
C8—C7—Cl1 119.5 (3) C14—C15—H15B 109.6
C6—C7—Cl1 119.4 (3) H15A—C15—H15B 108.1
C9—C8—C7 117.9 (4) C13—C14—C15 111.7 (5)
C9—C8—H8 121.0 C13—C14—H14B 109.3
C7—C8—H8 121.0 C15—C14—H14B 109.3
C8—C9—O1 115.4 (3) C13—C14—H14A 109.3
C8—C9—C10 123.6 (3) C15—C14—H14A 109.3
O1—C9—C10 120.9 (3) H14B—C14—H14A 107.9
C4—C11—S1 115.4 (3) N1—C13—C14 109.3 (4)
C4—C11—H11B 108.4 N1—C13—H13A 109.8
S1—C11—H11B 108.4 C14—C13—H13A 109.8
C4—C11—H11A 108.4 N1—C13—H13B 109.8
S1—C11—H11A 108.4 C14—C13—H13B 109.8
H11B—C11—H11A 107.5 H13A—C13—H13B 108.3
N1—C12—S2 125.5 (3)
C9—O1—C2—O2 −173.5 (4) C5—C10—C9—C8 0.5 (5)
C9—O1—C2—C3 4.7 (5) C4—C10—C9—C8 −179.1 (4)
O2—C2—C3—C4 174.8 (4) C5—C10—C9—O1 177.1 (3)
O1—C2—C3—C4 −3.2 (6) C4—C10—C9—O1 −2.5 (5)
C2—C3—C4—C10 −1.1 (6) C3—C4—C11—S1 −115.6 (4)
C2—C3—C4—C11 −177.6 (4) C10—C4—C11—S1 68.0 (4)
C3—C4—C10—C5 −175.7 (4) C12—S1—C11—C4 86.3 (3)
C11—C4—C10—C5 0.7 (5) C11—S1—C12—N1 175.5 (3)
C3—C4—C10—C9 3.9 (5) C11—S1—C12—S2 −3.6 (3)
C11—C4—C10—C9 −179.7 (3) S2—C12—N1—C17 171.5 (4)
C9—C10—C5—C6 −0.9 (5) S1—C12—N1—C17 −7.6 (5)
C4—C10—C5—C6 178.7 (4) S2—C12—N1—C13 −5.4 (6)
C10—C5—C6—C7 0.5 (6) S1—C12—N1—C13 175.4 (3)
C5—C6—C7—C8 0.3 (6) C12—N1—C17—C16 −117.9 (5)
C5—C6—C7—Cl1 −179.4 (3) C13—N1—C17—C16 59.3 (5)
C6—C7—C8—C9 −0.7 (6) N1—C17—C16—C15 −55.2 (6)
Cl1—C7—C8—C9 179.0 (3) C17—C16—C15—C14 52.2 (7)
C7—C8—C9—O1 −176.5 (3) C16—C15—C14—C13 −53.3 (6)
C7—C8—C9—C10 0.3 (6) C12—N1—C13—C14 117.5 (5)
C2—O1—C9—C8 175.0 (3) C17—N1—C13—C14 −59.8 (6)
C2—O1—C9—C10 −1.9 (5) C15—C14—C13—N1 56.3 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C17—H17B···S1 0.97 2.36 2.923 (5) 116
C13—H13A···S2 0.97 2.55 3.067 (4) 113
C6—H6···O2i 0.93 2.41 3.167 (5) 139

Symmetry code: (i) x−1, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5420).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bergendorff, O. & Hansson, C. (2002). J. Agric. Food Chem. 50, 1092–1096. [DOI] [PubMed]
  3. Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Huang, W., Ding, Y., Miao, Y., Liu, M.-Z., Li, Y. & Yang, G.-F. (2009). Eur. J. Med. Chem. 44, 3687–3696. [DOI] [PubMed]
  7. Hung, T. T., Lu, Y. J., Liao, W. Y. & Huang, C. L. (2007). IEEE Trans. Magn. 43, 867–869.
  8. Jones, G., Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). J. Phys. Chem. 89, 294–300.
  9. Kulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795–2818. [DOI] [PubMed]
  10. Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  11. Shastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416–2422.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Trenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. (2004). Chem. Rev. 104, 3059–3077. [DOI] [PubMed]
  15. Vasilliev, A. N. & Polackov, A. D. (2000). Molecules, 5, 1014–1017.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007933/lh5420sup1.cif

e-68-0o878-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007933/lh5420Isup2.hkl

e-68-0o878-Isup2.hkl (134.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007933/lh5420Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES