Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 29;68(Pt 3):o887. doi: 10.1107/S1600536812006836

(E)-1-(3-Bromo­phen­yl)-3-(3,4-dimeth­oxy­phen­yl)prop-2-en-1-one

Carlos A Escobar a,*, Alexander Trujillo a, Judith A K Howard b, Mauricio Fuentealba b
PMCID: PMC3297934  PMID: 22412737

Abstract

The mol­ecular structure of the title compound, C17H15BrO3, consists of a bromo­phenyl and a 3,4-dimeth­oxy­phenyl group linked through a prop-2-en-1-one spacer. The C=C double bond displays an E conformation, while the carbonyl group shows an S-cis conformation relative to the double bond.

Related literature  

For the Suzuki reaction, see: Miyaura & Suzuki (1995); Bringmann et al. (2005). For bichalcone derivatives, see: Shetonde et al. (2010). For related structures, see: Escobar et al. (2008); Valdebenito et al. (2010); Chu et al. (2004); Radha Krishna et al. (2005); Wu et al. (2005).graphic file with name e-68-0o887-scheme1.jpg

Experimental  

Crystal data  

  • C17H15BrO3

  • M r = 347.20

  • Monoclinic, Inline graphic

  • a = 12.7946 (5) Å

  • b = 3.9373 (1) Å

  • c = 29.8209 (10) Å

  • β = 109.219 (3)°

  • V = 1418.54 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 120 K

  • 0.2 × 0.12 × 0.08 mm

Data collection  

  • Agilent Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.802, T max = 1.000

  • 12861 measured reflections

  • 3429 independent reflections

  • 2895 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.074

  • S = 1.10

  • 3429 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006836/fj2515sup1.cif

e-68-0o887-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006836/fj2515Isup2.hkl

e-68-0o887-Isup2.hkl (168.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006836/fj2515Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812006836/fj2515Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by FONDECYT through grant Nos. 1080147 and 3110066. MF thanks to Becaschile Programme (Chile) for support through a postdoctoral fellowship.

supplementary crystallographic information

Comment

From the synthetic point of view, bromochalcones are the choice precursors to accomplish the C—C bond formation, through the Suzuki reaction, one of the most popular and powerful methods for coupling aryl–aryl moieties (Miyaura & Suzuki, 1995; Bringmann et al., 2005), to produce symmetric or asymmetric biphenyls, this being the entry to bichalcones (Shetonde et al., 2010).

The molecular structure of the title compound displays two phenyl rings connected through the organic prop-2-en-1-one spacer. As shown in Fig. 1, one phenyl ring is substituted at positions 3 and 4 with methoxy groups, while the other is substituted at position 3' with one Br atom.

The dihedral angle between the two aromatic rings joined by the conjugated spacer is 26.59 (9)°. On the other hand, the spacer formed by C10—C9—C8—C7—O1—C1 can be considered as a plane with a RMSD of 0.029 Å. This feature is also observed in other chalcones (Escobar et al. 2008; Valdebenito et al., 2010; Chu et al. 2004; Radha Krishna et al. 2005; Wu et al. 2005).

Finally, both inter- and intramolecular hydrogen bonds are not observed in the crystalline packing of title compound.

Experimental

A mixture of 3-bromoacetophenone (0.5 g, 2,5 mmol) and 3,4-dimethoxibenzaldehyde (0.41 g, 2,5 mmol), were dissolved in Methanol (50 ml), and were treated with KOH (2 g, dissolved in 20 ml methanol). After 20 min 30 ml of water were added, and the title compound precipitated as a yellow solid. Then, it was filtered and recrystallized in ethanol to yield 1.27 g (73%) of a yellow solid. m.p.117–120°C. IR (KBr): ν = 1657 (CO), cm-1. 1H-NMR (400 MHz, CDCl3): d = 3.94 (3H, s, OCH3), 3.96 (3H, s, OCH3), 6.90 (1H, d, J = 8.3 Hz, H5), 7.16 (1H, m, H2), 7.24 (1H, d, J = 7.2 Hz., H6), 7.32 (1H, d, J = 15.6 Hz., Ha), 7.38 (1H, t, J = 7.8 Hz., H5), 7.70 (1H, d, J = 7.9 Hz., H4), 7.77 (1H, d, J = 15.6 Hz., Hb), 7.93 (1H, d, J = 7.7 Hz., H6), 8.13 (1H, m, H2). 13C-NMR (400 MHz, CDCl3): d = 56.1, 110.2, 111.2, 119.4, 122.9, 123.5, 127.0, 127.6, 130.2, 131.4, 135.4, 140.4, 146.0, 149.3, 151.8, 189.1. HRMS calc. for C17H15BrO3 346.02046; Found 346.019994.

Refinement

The H atoms positions were calculated after each cycle of refinement using a riding model with C—H distances in the range 0.95—0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound with full atom numbering scheme. Displacement ellipsoids are presented at 30% probability level and H atoms are shown as spheres.

Crystal data

C17H15BrO3 F(000) = 704
Mr = 347.20 Dx = 1.626 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.7107 Å
a = 12.7946 (5) Å Cell parameters from 3587 reflections
b = 3.9373 (1) Å θ = 2.6–29.0°
c = 29.8209 (10) Å µ = 2.91 mm1
β = 109.219 (3)° T = 120 K
V = 1418.54 (8) Å3 Prism, colourless
Z = 4 0.2 × 0.12 × 0.08 mm

Data collection

Agilent Xcalibur Sapphire3 Gemini ultra diffractometer 3429 independent reflections
Radiation source: Enhance (Mo) X-ray source 2895 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
Detector resolution: 16.1511 pixels mm-1 θmax = 29.0°, θmin = 2.6°
ω scans h = −17→16
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −5→5
Tmin = 0.802, Tmax = 1.000 l = −40→40
12861 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.019P)2 + 1.5139P] where P = (Fo2 + 2Fc2)/3
3429 reflections (Δ/σ)max = 0.002
192 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.11568 (2) 0.90741 (7) 0.528213 (9) 0.01853 (9)
O1 −0.25274 (14) 0.3062 (5) 0.31571 (6) 0.0198 (4)
O2 0.40922 (14) 0.3072 (5) 0.32327 (6) 0.0173 (4)
O3 0.37580 (14) 0.5457 (5) 0.39741 (6) 0.0190 (4)
C16 0.4322 (2) 0.1612 (7) 0.28340 (10) 0.0205 (6)
H16A 0.3873 0.2751 0.2542 0.031*
H16B 0.4141 −0.0814 0.2813 0.031*
H16C 0.5109 0.1902 0.2874 0.031*
C9 −0.0247 (2) 0.2800 (7) 0.32953 (9) 0.0143 (5)
H9 −0.0759 0.1507 0.3052 0.017*
C11 0.1119 (2) 0.1273 (6) 0.29162 (9) 0.0143 (5)
H11 0.0535 0.0184 0.2676 0.017*
C12 0.2171 (2) 0.1330 (6) 0.28749 (9) 0.0148 (5)
H12 0.2298 0.0357 0.2606 0.018*
C14 0.2834 (2) 0.4212 (7) 0.36346 (9) 0.0143 (5)
C1 −0.2297 (2) 0.6078 (7) 0.38681 (9) 0.0140 (5)
C15 0.1780 (2) 0.4234 (7) 0.36627 (9) 0.0144 (5)
H15 0.1649 0.5243 0.3928 0.017*
C5 −0.3827 (2) 0.8723 (7) 0.40364 (10) 0.0201 (6)
H5 −0.4579 0.9429 0.3932 0.024*
C10 0.0897 (2) 0.2760 (6) 0.32972 (9) 0.0130 (5)
C3 −0.2072 (2) 0.8273 (6) 0.46427 (9) 0.0142 (5)
C4 −0.3163 (2) 0.9344 (7) 0.45004 (10) 0.0178 (6)
H4 −0.3450 1.0479 0.4716 0.021*
C8 −0.0668 (2) 0.4429 (7) 0.35928 (9) 0.0149 (5)
H8 −0.0187 0.5619 0.3858 0.018*
C2 −0.1622 (2) 0.6663 (6) 0.43363 (9) 0.0135 (5)
H2 −0.0869 0.5968 0.4442 0.016*
C13 0.3031 (2) 0.2829 (6) 0.32325 (9) 0.0138 (5)
C7 −0.1871 (2) 0.4390 (7) 0.35127 (9) 0.0143 (5)
C17 0.3612 (2) 0.6874 (7) 0.43882 (9) 0.0212 (6)
H17A 0.3096 0.8790 0.4298 0.032*
H17B 0.4327 0.7667 0.4604 0.032*
H17C 0.3313 0.5140 0.4548 0.032*
C6 −0.3401 (2) 0.7083 (7) 0.37247 (10) 0.0175 (6)
H6 −0.3866 0.6638 0.3409 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02037 (14) 0.02143 (14) 0.01387 (14) −0.00093 (12) 0.00574 (10) −0.00270 (12)
O1 0.0164 (9) 0.0267 (11) 0.0153 (10) −0.0041 (8) 0.0037 (8) −0.0030 (8)
O2 0.0138 (9) 0.0241 (10) 0.0154 (10) 0.0002 (8) 0.0068 (7) −0.0033 (8)
O3 0.0141 (9) 0.0302 (11) 0.0126 (10) −0.0035 (8) 0.0042 (7) −0.0081 (9)
C16 0.0222 (14) 0.0244 (15) 0.0198 (15) 0.0009 (12) 0.0138 (12) −0.0032 (12)
C9 0.0151 (13) 0.0143 (12) 0.0115 (13) −0.0014 (11) 0.0017 (10) 0.0032 (11)
C11 0.0151 (12) 0.0144 (13) 0.0115 (13) 0.0002 (10) 0.0018 (10) 0.0005 (11)
C12 0.0198 (13) 0.0146 (13) 0.0115 (13) 0.0031 (11) 0.0073 (10) −0.0011 (11)
C14 0.0173 (12) 0.0132 (12) 0.0113 (13) −0.0004 (11) 0.0030 (10) −0.0002 (11)
C1 0.0150 (12) 0.0128 (12) 0.0148 (13) −0.0034 (11) 0.0058 (10) 0.0026 (11)
C15 0.0190 (13) 0.0143 (12) 0.0111 (13) 0.0019 (11) 0.0065 (10) −0.0001 (11)
C5 0.0137 (13) 0.0235 (15) 0.0237 (15) 0.0011 (11) 0.0071 (11) 0.0050 (13)
C10 0.0150 (12) 0.0115 (12) 0.0126 (13) 0.0025 (10) 0.0048 (10) 0.0031 (10)
C3 0.0156 (12) 0.0133 (13) 0.0131 (14) −0.0031 (10) 0.0039 (10) 0.0019 (10)
C4 0.0168 (13) 0.0176 (13) 0.0217 (15) 0.0010 (11) 0.0102 (11) −0.0001 (12)
C8 0.0146 (12) 0.0164 (13) 0.0128 (13) −0.0009 (11) 0.0033 (10) 0.0017 (11)
C2 0.0104 (12) 0.0140 (13) 0.0174 (14) −0.0024 (10) 0.0064 (10) 0.0030 (11)
C13 0.0141 (12) 0.0135 (12) 0.0141 (13) 0.0016 (10) 0.0052 (10) 0.0031 (11)
C7 0.0155 (12) 0.0124 (12) 0.0141 (13) −0.0005 (11) 0.0036 (10) 0.0036 (11)
C17 0.0201 (14) 0.0285 (16) 0.0147 (14) −0.0036 (12) 0.0054 (11) −0.0065 (12)
C6 0.0159 (13) 0.0203 (14) 0.0141 (14) −0.0026 (11) 0.0019 (10) 0.0025 (11)

Geometric parameters (Å, º)

Br1—C3 1.907 (3) C1—C2 1.398 (3)
O1—C7 1.232 (3) C1—C7 1.498 (4)
O2—C16 1.436 (3) C1—C6 1.391 (4)
O2—C13 1.361 (3) C15—H15 0.9500
O3—C14 1.369 (3) C15—C10 1.411 (3)
O3—C17 1.422 (3) C5—H5 0.9500
C16—H16A 0.9800 C5—C4 1.387 (4)
C16—H16B 0.9800 C5—C6 1.383 (4)
C16—H16C 0.9800 C3—C4 1.384 (4)
C9—H9 0.9500 C3—C2 1.384 (4)
C9—C10 1.462 (3) C4—H4 0.9500
C9—C8 1.343 (4) C8—H8 0.9500
C11—H11 0.9500 C8—C7 1.477 (3)
C11—C12 1.391 (3) C2—H2 0.9500
C11—C10 1.388 (3) C17—H17A 0.9800
C12—H12 0.9500 C17—H17B 0.9800
C12—C13 1.387 (3) C17—H17C 0.9800
C14—C15 1.379 (3) C6—H6 0.9500
C14—C13 1.413 (4)
C13—O2—C16 116.6 (2) C11—C10—C15 118.5 (2)
C14—O3—C17 117.0 (2) C15—C10—C9 123.0 (2)
O2—C16—H16A 109.5 C4—C3—Br1 118.8 (2)
O2—C16—H16B 109.5 C2—C3—Br1 118.96 (19)
O2—C16—H16C 109.5 C2—C3—C4 122.3 (2)
H16A—C16—H16B 109.5 C5—C4—H4 120.7
H16A—C16—H16C 109.5 C3—C4—C5 118.5 (2)
H16B—C16—H16C 109.5 C3—C4—H4 120.7
C10—C9—H9 115.8 C9—C8—H8 119.6
C8—C9—H9 115.8 C9—C8—C7 120.8 (2)
C8—C9—C10 128.5 (2) C7—C8—H8 119.6
C12—C11—H11 119.0 C1—C2—H2 120.7
C10—C11—H11 119.0 C3—C2—C1 118.7 (2)
C10—C11—C12 122.0 (2) C3—C2—H2 120.7
C11—C12—H12 120.5 O2—C13—C12 124.7 (2)
C13—C12—C11 119.0 (2) O2—C13—C14 115.4 (2)
C13—C12—H12 120.5 C12—C13—C14 119.9 (2)
O3—C14—C15 125.2 (2) O1—C7—C1 119.5 (2)
O3—C14—C13 114.5 (2) O1—C7—C8 121.5 (2)
C15—C14—C13 120.3 (2) C8—C7—C1 118.9 (2)
C2—C1—C7 122.0 (2) O3—C17—H17A 109.5
C6—C1—C2 119.4 (2) O3—C17—H17B 109.5
C6—C1—C7 118.6 (2) O3—C17—H17C 109.5
C14—C15—H15 119.9 H17A—C17—H17B 109.5
C14—C15—C10 120.1 (2) H17A—C17—H17C 109.5
C10—C15—H15 119.9 H17B—C17—H17C 109.5
C4—C5—H5 119.8 C1—C6—H6 119.6
C6—C5—H5 119.8 C5—C6—C1 120.7 (2)
C6—C5—C4 120.3 (2) C5—C6—H6 119.6
C11—C10—C9 118.4 (2)
Br1—C3—C4—C5 −179.3 (2) C10—C11—C12—C13 2.0 (4)
Br1—C3—C2—C1 179.90 (18) C4—C5—C6—C1 −1.0 (4)
O3—C14—C15—C10 −177.6 (2) C4—C3—C2—C1 −0.5 (4)
O3—C14—C13—O2 −2.7 (3) C8—C9—C10—C11 −171.3 (3)
O3—C14—C13—C12 176.7 (2) C8—C9—C10—C15 7.1 (4)
C16—O2—C13—C12 −0.9 (4) C2—C1—C7—O1 159.4 (2)
C16—O2—C13—C14 178.5 (2) C2—C1—C7—C8 −22.0 (4)
C9—C8—C7—O1 −4.7 (4) C2—C1—C6—C5 1.6 (4)
C9—C8—C7—C1 176.7 (2) C2—C3—C4—C5 1.1 (4)
C11—C12—C13—O2 −179.5 (2) C13—C14—C15—C10 2.3 (4)
C11—C12—C13—C14 1.1 (4) C7—C1—C2—C3 179.2 (2)
C12—C11—C10—C9 175.6 (2) C7—C1—C6—C5 −178.5 (2)
C12—C11—C10—C15 −2.9 (4) C17—O3—C14—C15 0.2 (4)
C14—C15—C10—C9 −177.7 (2) C17—O3—C14—C13 −179.8 (2)
C14—C15—C10—C11 0.7 (4) C6—C1—C2—C3 −0.8 (4)
C15—C14—C13—O2 177.3 (2) C6—C1—C7—O1 −20.6 (4)
C15—C14—C13—C12 −3.3 (4) C6—C1—C7—C8 158.1 (2)
C10—C9—C8—C7 175.1 (2) C6—C5—C4—C3 −0.3 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2515).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
  2. Bringmann, G., Price Mortimer, A. J., Keller, P. A., Gresser, M. J., Garner, J. & Breuning, M. (2005). Angew. Chem. Int. Ed. 44, 5384–5427. [DOI] [PubMed]
  3. Chu, H.-W., Wu, H.-T. & Lee, Y.-J. (2004). Tetrahedron, 60, 2647–2655.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Escobar, C. A., Vega, A., Sicker, D. & Ibañez, A. (2008). Acta Cryst. E64, o1834. [DOI] [PMC free article] [PubMed]
  6. Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.
  7. Radha Krishna, J., Jagadeesh Kumar, N., Krishnaiah, M., Venkata Rao, C., Koteswara Rao, Y. & Puranik, V. G. (2005). Acta Cryst. E61, o1323–o1325.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shetonde, O. M., Wendimagegn, M., Merhatibeb, B., Kerstin, A.-M. & Berhanu, M. A. (2010). Bioorg. Med. Chem. 18, 2464–2473.
  10. Valdebenito, C., Garland, M. T., Fuentealba, M. & Escobar, C. A. (2010). Acta Cryst. E66, m838. [DOI] [PMC free article] [PubMed]
  11. Wu, H., Xu, Z. & Liang, Y.-M. (2005). Acta Cryst. E61, o1434–o1435.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006836/fj2515sup1.cif

e-68-0o887-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006836/fj2515Isup2.hkl

e-68-0o887-Isup2.hkl (168.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006836/fj2515Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812006836/fj2515Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES