Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 29;68(Pt 3):o908. doi: 10.1107/S1600536812007908

1-Acetyl-4-(phenyl­sulfan­yl)imidazolidin-2-one

Alaa A-M Abdel-Aziz a,b,, Adel S El-Azab a,c, Amer M Alanazi a, Seik Weng Ng d,e, Edward R T Tiekink d,*
PMCID: PMC3297951  PMID: 22412754

Abstract

The five-membered ring in the title imidazolidinone derivative, C11H12N2O2S, adopts an envelope conformation with the S-bound C atom being the flap atom. Overall, the mol­ecule has a U-shaped conformation as both rings are folded towards each other [dihedral angle = 31.66 (6)°]. An eight-membered amide {⋯HNCO}2 synthon leads to hydrogen-bonded dimeric aggregates in the crystal: these are additionally linked by C—H⋯π inter­actions.

Related literature  

For the anti­tumour potential of imidazolidinones, see: Abdel-Aziz et al. (2012). For ring conformational analysis, see: Cremer & Pople (1975).graphic file with name e-68-0o908-scheme1.jpg

Experimental  

Crystal data  

  • C11H12N2O2S

  • M r = 236.29

  • Monoclinic, Inline graphic

  • a = 7.0473 (1) Å

  • b = 14.3274 (3) Å

  • c = 10.7796 (2) Å

  • β = 96.921 (2)°

  • V = 1080.48 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.56 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.754, T max = 1.000

  • 8437 measured reflections

  • 2186 independent reflections

  • 2135 reflections with I > 2σ(I)

  • R int = 0.015

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.073

  • S = 1.01

  • 2186 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812007908/bt5824sup1.cif

e-68-0o908-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007908/bt5824Isup2.hkl

e-68-0o908-Isup2.hkl (107.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007908/bt5824Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.876 (19) 2.032 (19) 2.8989 (13) 169.8 (17)
C1—H1ACg1ii 0.98 2.72 3.6360 (13) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

A recent study described the anti-tumor potential of imidazolidinones (Abdel-Aziz et al., 2012). In continuation of these studies, herein, the crystal structure determination of an imidazolidinone derivative, 1-acetyl-4-(phenylthio)imidazolidin-2-one (I) is described.

The five-membered ring in (I), Fig. 1, adopts an envelope conformation with the C4 atom being the flap atom. The puckering parameters (Cremer & Pople, 1975) are Q = 0.2364 (12) Å and φ2 = 113.9 (3)°. The molecule has a U-shaped conformation whereby the five- and six-membered rings lie to the same side of the molecule and form a dihedral angle of 31.66 (6)°.

In the crystal packing, centrosymmetrically related molecules associate via N—H···O hydrogen bonds leading to the familiar eight-membered amide {···HNCO}2 synthon, Table 1. The dimers are connected into the three-dimensional architecture by C—H···π interactions, Fig. 2 and Table 1.

Experimental

At room temperature, trifluoroacetic acid (0.3 equiv.) was added drop wise to a stirred solution of 1-acetyl-4-methoxyimidazolidin-2-one (1 equiv.) and thiophenol (1 equiv.) in dry CH3CN (0.01 mol/l) over a period of 15 min. After being stirred for 2 h at room temperature, the mixture was quenched by adding ammonium chloride solution (5 ml). The product was extracted with ethylacetate, washed with brine and dried over anhydrous sodium sulfate. The product obtained after evaporation of solvent was purified by column chromatography using a mixture of hexane and CHCl3 (1:1 v/v) as eluent. Crystals were obtained by slow evaporation of the eluent solution. Yield, 96%. m.p. 383–384 K. IR (KBr, cm-1): ν 3320 (N—H), 1760, 1710 (C═ O). 1H NMR (CDCl3): δ 2.20 (s, 3H), 3.98 (m, 1H), 4.06 (m, 1H), 4.901 (m, 1H), 6.42 (s, 1H), 7.28 (d, 3H, J = 7.0 Hz), 7.45–7.46 (d, 2H, J = 5.5 Hz). 13C NMR (CDCl3): δ 23.21, 48.95, 56.17, 127.51, 129.07, 129.36, 129.46, 135.22, 155.12, 170.11.

Refinement

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The H atom bonded to N was freely refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the unit-cell contents for (I). The N—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C11H12N2O2S F(000) = 496
Mr = 236.29 Dx = 1.453 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2yn Cell parameters from 6092 reflections
a = 7.0473 (1) Å θ = 3.1–76.4°
b = 14.3274 (3) Å µ = 2.56 mm1
c = 10.7796 (2) Å T = 100 K
β = 96.921 (2)° Prism, colourless
V = 1080.48 (3) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 2186 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2135 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.015
Detector resolution: 10.4041 pixels mm-1 θmax = 76.6°, θmin = 5.2°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −17→15
Tmin = 0.754, Tmax = 1.000 l = −10→13
8437 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.5578P] where P = (Fo2 + 2Fc2)/3
2186 reflections (Δ/σ)max = 0.001
150 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.90697 (4) 0.65626 (2) 0.40810 (3) 0.01816 (10)
O1 0.34661 (12) 0.49945 (6) 0.34757 (8) 0.01716 (19)
O2 0.48246 (13) 0.61074 (6) 0.00853 (8) 0.0195 (2)
N1 0.54386 (14) 0.54954 (7) 0.20071 (9) 0.0138 (2)
N2 0.67635 (15) 0.49985 (7) 0.38573 (9) 0.0161 (2)
C1 0.20799 (17) 0.57746 (9) 0.11228 (11) 0.0174 (3)
H1A 0.1359 0.6028 0.0363 0.026*
H1B 0.1814 0.6146 0.1846 0.026*
H1C 0.1696 0.5126 0.1237 0.026*
C2 0.41743 (17) 0.58111 (8) 0.10054 (10) 0.0142 (2)
C3 0.50542 (17) 0.51505 (8) 0.31596 (10) 0.0138 (2)
C4 0.83250 (17) 0.54464 (9) 0.33269 (11) 0.0163 (2)
H4 0.9445 0.5013 0.3399 0.020*
C5 0.75037 (17) 0.55287 (9) 0.19467 (11) 0.0169 (2)
H5A 0.7883 0.6124 0.1582 0.020*
H5B 0.7925 0.5003 0.1450 0.020*
C6 0.68485 (17) 0.71643 (8) 0.38907 (11) 0.0154 (2)
C7 0.63946 (19) 0.77629 (9) 0.28787 (11) 0.0192 (3)
H7 0.7304 0.7878 0.2314 0.023*
C8 0.4618 (2) 0.81908 (9) 0.26958 (12) 0.0209 (3)
H8 0.4305 0.8590 0.1997 0.025*
C9 0.32924 (19) 0.80386 (9) 0.35317 (12) 0.0201 (3)
H9 0.2073 0.8329 0.3402 0.024*
C10 0.37606 (18) 0.74601 (9) 0.45571 (11) 0.0180 (3)
H10 0.2862 0.7362 0.5134 0.022*
C11 0.55324 (17) 0.70240 (8) 0.47448 (11) 0.0158 (2)
H11 0.5848 0.6632 0.5450 0.019*
H1 0.675 (3) 0.4930 (13) 0.4664 (18) 0.032 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01240 (17) 0.02410 (18) 0.01774 (16) −0.00284 (10) 0.00085 (11) −0.00434 (11)
O1 0.0171 (5) 0.0213 (4) 0.0130 (4) −0.0053 (3) 0.0016 (3) 0.0022 (3)
O2 0.0216 (5) 0.0235 (5) 0.0139 (4) −0.0003 (4) 0.0039 (3) 0.0045 (3)
N1 0.0132 (5) 0.0171 (5) 0.0112 (4) −0.0003 (4) 0.0018 (4) 0.0004 (4)
N2 0.0167 (5) 0.0189 (5) 0.0121 (5) 0.0000 (4) −0.0005 (4) 0.0016 (4)
C1 0.0154 (6) 0.0203 (6) 0.0163 (5) 0.0016 (5) 0.0003 (4) 0.0031 (4)
C2 0.0178 (6) 0.0123 (5) 0.0122 (5) 0.0004 (4) 0.0003 (4) −0.0004 (4)
C3 0.0181 (6) 0.0112 (5) 0.0117 (5) −0.0011 (4) 0.0004 (4) −0.0010 (4)
C4 0.0141 (6) 0.0199 (6) 0.0145 (5) 0.0016 (4) 0.0003 (4) −0.0017 (4)
C5 0.0132 (6) 0.0239 (6) 0.0137 (5) 0.0005 (5) 0.0013 (4) −0.0024 (5)
C6 0.0152 (6) 0.0160 (6) 0.0148 (5) −0.0041 (4) 0.0018 (4) −0.0045 (4)
C7 0.0252 (7) 0.0177 (6) 0.0158 (6) −0.0051 (5) 0.0065 (5) −0.0022 (4)
C8 0.0300 (7) 0.0150 (6) 0.0170 (6) −0.0016 (5) −0.0001 (5) 0.0010 (5)
C9 0.0189 (6) 0.0175 (6) 0.0231 (6) 0.0004 (5) −0.0006 (5) −0.0038 (5)
C10 0.0179 (6) 0.0189 (6) 0.0178 (6) −0.0042 (5) 0.0046 (5) −0.0045 (5)
C11 0.0187 (6) 0.0159 (6) 0.0128 (5) −0.0046 (5) 0.0015 (4) −0.0015 (4)

Geometric parameters (Å, º)

S1—C6 1.7771 (13) C4—H4 1.0000
S1—C4 1.8413 (13) C5—H5A 0.9900
O1—C3 1.2290 (15) C5—H5B 0.9900
O2—C2 1.2181 (14) C6—C7 1.3943 (18)
N1—C3 1.3936 (14) C6—C11 1.3978 (16)
N1—C2 1.3902 (15) C7—C8 1.3864 (19)
N1—C5 1.4654 (15) C7—H7 0.9500
N2—C3 1.3586 (16) C8—C9 1.3913 (18)
N2—C4 1.4496 (15) C8—H8 0.9500
N2—H1 0.876 (19) C9—C10 1.3891 (18)
C1—C2 1.4975 (16) C9—H9 0.9500
C1—H1A 0.9800 C10—C11 1.3891 (18)
C1—H1B 0.9800 C10—H10 0.9500
C1—H1C 0.9800 C11—H11 0.9500
C4—C5 1.5346 (16)
C6—S1—C4 99.80 (6) N1—C5—C4 102.41 (9)
C3—N1—C2 129.24 (10) N1—C5—H5A 111.3
C3—N1—C5 110.61 (10) C4—C5—H5A 111.3
C2—N1—C5 120.12 (10) N1—C5—H5B 111.3
C3—N2—C4 112.04 (10) C4—C5—H5B 111.3
C3—N2—H1 116.8 (12) H5A—C5—H5B 109.2
C4—N2—H1 122.8 (12) C7—C6—C11 119.73 (12)
C2—C1—H1A 109.5 C7—C6—S1 120.30 (9)
C2—C1—H1B 109.5 C11—C6—S1 119.96 (10)
H1A—C1—H1B 109.5 C8—C7—C6 120.09 (11)
C2—C1—H1C 109.5 C8—C7—H7 120.0
H1A—C1—H1C 109.5 C6—C7—H7 120.0
H1B—C1—H1C 109.5 C7—C8—C9 120.26 (12)
O2—C2—N1 118.50 (11) C7—C8—H8 119.9
O2—C2—C1 123.53 (11) C9—C8—H8 119.9
N1—C2—C1 117.97 (10) C8—C9—C10 119.68 (12)
O1—C3—N2 126.42 (10) C8—C9—H9 120.2
O1—C3—N1 126.36 (11) C10—C9—H9 120.2
N2—C3—N1 107.20 (10) C11—C10—C9 120.49 (11)
N2—C4—C5 101.59 (9) C11—C10—H10 119.8
N2—C4—S1 113.57 (8) C9—C10—H10 119.8
C5—C4—S1 114.55 (9) C10—C11—C6 119.70 (11)
N2—C4—H4 108.9 C10—C11—H11 120.1
C5—C4—H4 108.9 C6—C11—H11 120.1
S1—C4—H4 108.9
C3—N1—C2—O2 178.27 (11) C3—N1—C5—C4 −16.59 (12)
C5—N1—C2—O2 0.41 (17) C2—N1—C5—C4 161.64 (10)
C3—N1—C2—C1 −1.26 (18) N2—C4—C5—N1 23.05 (12)
C5—N1—C2—C1 −179.12 (10) S1—C4—C5—N1 −99.80 (10)
C4—N2—C3—O1 −167.06 (11) C4—S1—C6—C7 −95.17 (10)
C4—N2—C3—N1 14.33 (13) C4—S1—C6—C11 83.57 (10)
C2—N1—C3—O1 5.9 (2) C11—C6—C7—C8 −2.31 (18)
C5—N1—C3—O1 −176.12 (11) S1—C6—C7—C8 176.44 (9)
C2—N1—C3—N2 −175.53 (11) C6—C7—C8—C9 1.12 (19)
C5—N1—C3—N2 2.49 (13) C7—C8—C9—C10 0.44 (19)
C3—N2—C4—C5 −23.91 (13) C8—C9—C10—C11 −0.80 (19)
C3—N2—C4—S1 99.60 (10) C9—C10—C11—C6 −0.39 (18)
C6—S1—C4—N2 −55.80 (9) C7—C6—C11—C10 1.94 (18)
C6—S1—C4—C5 60.32 (9) S1—C6—C11—C10 −176.81 (9)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C6–C11 ring.

D—H···A D—H H···A D···A D—H···A
N2—H1···O1i 0.876 (19) 2.032 (19) 2.8989 (13) 169.8 (17)
C1—H1A···Cg1ii 0.98 2.72 3.6360 (13) 155

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5824).

References

  1. Abdel-Aziz, A. A.-M., El-Azab, A. S., El-Subbagh, H. I., Al-Obaid, A. M., Alanazi, A. M. & Al-Omar, M. A. (2012). Bioorg. Med. Chem. Lett. 22, 2008–2014. [DOI] [PubMed]
  2. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812007908/bt5824sup1.cif

e-68-0o908-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007908/bt5824Isup2.hkl

e-68-0o908-Isup2.hkl (107.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007908/bt5824Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES