Abstract
Acute iron intoxication is a frequent, sometimes life-threatening, form of poisoning. Present therapy, in severe cases, includes oral and intravenous administration of the potent iron chelator, deferoxamine. Unfortunately, high dose intravenous deferoxamine causes acute hypotension additive with that engendered by the iron poisoning itself. To obviate this problem, we have covalently attached deferoxamine to high molecular weight carbohydrates such as dextran and hydroxyethyl starch. These macromolecular forms of deferoxamine do not cause detectable decreases in blood pressure of experimental animals, even when administered intravenously in very large doses, and persist in circulation much longer than the free drug. These novel iron-chelating substances, but not deferoxamine itself, will prevent mortality from otherwise lethal doses of iron administered to mice either orally or intraperitoneally. Further reflecting this enhanced therapeutic efficacy, the high molecular weight iron chelators also abrogate iron-mediated hepatotoxicity, suppressing the release of alanine aminotransferase. We conclude that high molecular weight derivatives of deferoxamine hold promise for the effective therapy of acute iron intoxication and may also be useful in other clinical circumstances in which control of free, reactive iron is therapeutically desirable.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambrosio G., Zweier J. L., Jacobus W. E., Weisfeldt M. L., Flaherty J. T. Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: the role of iron in the pathogenesis of reperfusion injury. Circulation. 1987 Oct;76(4):906–915. doi: 10.1161/01.cir.76.4.906. [DOI] [PubMed] [Google Scholar]
- Babbs C. F. Role of iron ions in the genesis of reperfusion injury following successful cardiopulmonary resuscitation: preliminary data and a biochemical hypothesis. Ann Emerg Med. 1985 Aug;14(8):777–783. doi: 10.1016/s0196-0644(85)80056-1. [DOI] [PubMed] [Google Scholar]
- Badylak S. F., Simmons A., Turek J., Babbs C. F. Protection from reperfusion injury in the isolated rat heart by postischaemic deferoxamine and oxypurinol administration. Cardiovasc Res. 1987 Jul;21(7):500–506. doi: 10.1093/cvr/21.7.500. [DOI] [PubMed] [Google Scholar]
- Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
- Farber N. E., Vercellotti G. M., Jacob H. S., Pieper G. M., Gross G. J. Evidence for a role of iron-catalyzed oxidants in functional and metabolic stunning in the canine heart. Circ Res. 1988 Aug;63(2):351–360. doi: 10.1161/01.res.63.2.351. [DOI] [PubMed] [Google Scholar]
- Ganote C. E., Nahara G. Acute ferrous sulfate hepatotoxicity in rats. An electron microscopic and biochemical study. Lab Invest. 1973 Apr;28(4):426–436. [PubMed] [Google Scholar]
- Graf E., Mahoney J. R., Bryant R. G., Eaton J. W. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem. 1984 Mar 25;259(6):3620–3624. [PubMed] [Google Scholar]
- HOPPE J. O., MARCELLI G. M. A., TAINTER M. L. An experimental study of the toxicity of ferrous gluconate. Am J Med Sci. 1955 Nov;230(5):491–498. doi: 10.1097/00000441-195523050-00003. [DOI] [PubMed] [Google Scholar]
- Kang J. O., Slivka A., Slater G., Cohen G. In vivo formation of hydroxyl radicals following intragastric administration of ferrous salt in rats. J Inorg Biochem. 1989 Jan;35(1):55–69. doi: 10.1016/0162-0134(89)84005-x. [DOI] [PubMed] [Google Scholar]
- Litovitz T. L., Schmitz B. F., Matyunas N., Martin T. G. 1987 annual report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med. 1988 Sep;6(5):479–515. doi: 10.1016/0735-6757(88)90252-5. [DOI] [PubMed] [Google Scholar]
- Paller M. S., Hedlund B. E. Role of iron in postischemic renal injury in the rat. Kidney Int. 1988 Oct;34(4):474–480. doi: 10.1038/ki.1988.205. [DOI] [PubMed] [Google Scholar]
- Robotham J. L., Lietman P. S. Acute iron poisoning. A review. Am J Dis Child. 1980 Sep;134(9):875–879. doi: 10.1001/archpedi.1980.02130210059016. [DOI] [PubMed] [Google Scholar]
- Westlin W. F. Deferoxamine as a chelating agent. Clin Toxicol. 1971 Dec;4(4):597–602. doi: 10.3109/15563657108990982. [DOI] [PubMed] [Google Scholar]
- Westlin W. F. Deferoxamine in the treatment of acute iron poisoning. Clinical experiences with 172 children. Clin Pediatr (Phila) 1966 Sep;5(9):531–535. doi: 10.1177/000992286600500907. [DOI] [PubMed] [Google Scholar]
- Whitten C. F., Brough A. J. The pathophysiology of acute iron poisoning. Clin Toxicol. 1971 Dec;4(4):585–595. doi: 10.3109/15563657108990981. [DOI] [PubMed] [Google Scholar]
- Whitten C. F., Gibson G. W., Good M. H., Goodwin J. F., Brough A. J. Studies in acute iron poisoning. I. Desferrioxamine in the treatment of acute iron poisoning: clinical observations, experimental studies, and theoretical considerations. Pediatrics. 1965 Sep;36(3):322–335. [PubMed] [Google Scholar]