Abstract
This study examines adaptations in myocardial cytosolic phosphate content and buffering capacity that occur in vivo as a function of development. Phosphate metabolites were monitored in an open chest sheep preparation using a 31P magnetic resonance surface coil over the left ventricle. Newborn lambs (aged 4-9 d, n = 5) underwent exchange transfusion with adult blood to reduce blood-borne 2,3-diphosphoglycerate contamination of the heart monophosphate and phosphomonoester resonances, thus allowing determination of these phosphate concentrations. The blood-exchanged newborns and mature controls (aged 30-60 d, n = 5) were infused with 0.4 N hydrochloric acid to decrease pH from greater than 7.35 to less than 7.00. Simultaneously, intracellular and extracellular pH were determined from the chemical shifts of the respective phosphate peaks and compared to arterial blood pH. Findings were as follows: (a) diphosphoglycerate contribution to the cardiac spectrum was found to be negligible, (b) significant decreases in cytosolic phosphate (P less than 0.03) and phosphomonoester (P less than 0.01) content occurred with maturation, and (c) large decreases in extracellular pH (greater than 0.5 U) in both groups were similarly associated with only small changes in intracellular pH (less than 0.1 U). Change in cytosolic phosphate content implies that alterations occur in the phosphorylation potential with resulting effects on regulation of myocardial respiration, and cardiac energetics.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balaban R. S., Kantor H. L., Katz L. A., Briggs R. W. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science. 1986 May 30;232(4754):1121–1123. doi: 10.1126/science.3704638. [DOI] [PubMed] [Google Scholar]
- Balaban R. S. The application of nuclear magnetic resonance to the study of cellular physiology. Am J Physiol. 1984 Jan;246(1 Pt 1):C10–C19. doi: 10.1152/ajpcell.1984.246.1.C10. [DOI] [PubMed] [Google Scholar]
- Brindle K. M., Rajagopalan B., Williams D. S., Detre J. A., Simplaceanu E., Ho C., Radda G. K. 31P NMR measurements of myocardial pH in vivo. Biochem Biophys Res Commun. 1988 Feb 29;151(1):70–77. doi: 10.1016/0006-291x(88)90560-8. [DOI] [PubMed] [Google Scholar]
- Ellis D., Thomas R. C. Direct measurement of the intracellular pH of mammalian cardiac muscle. J Physiol. 1976 Nov;262(3):755–771. doi: 10.1113/jphysiol.1976.sp011619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher D. J. Comparative effects of metabolic acidemia and hypoxemia on cardiac output and regional blood flows in unanesthetized newborn lambs. Pediatr Res. 1986 Aug;20(8):756–760. doi: 10.1203/00006450-198608000-00011. [DOI] [PubMed] [Google Scholar]
- Garlick P. B., Radda G. K., Seeley P. J. Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem J. 1979 Dec 15;184(3):547–554. doi: 10.1042/bj1840547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gyulai L., Bolinger L., Leigh J. S., Jr, Barlow C., Chance B. Phosphorylethanolamine--the major constituent of the phosphomonoester peak observed by 31P-NMR on developing dog brain. FEBS Lett. 1984 Dec 3;178(1):137–142. doi: 10.1016/0014-5793(84)81257-0. [DOI] [PubMed] [Google Scholar]
- Heerschap A., Bergman A. H., van Vaals J. J., Wirtz P., Loermans H. M., Veerkamp J. H. Alterations in relative phosphocreatine concentrations in preclinical mouse muscular dystrophy revealed by in vivo NMR. NMR Biomed. 1988 Feb;1(1):27–31. doi: 10.1002/nbm.1940010106. [DOI] [PubMed] [Google Scholar]
- Heineman F. W., Balaban R. S. Phosphorus-31 nuclear magnetic resonance analysis of transient changes of canine myocardial metabolism in vivo. J Clin Invest. 1990 Mar;85(3):843–852. doi: 10.1172/JCI114511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hitzig B. M., Prichard J. W., Kantor H. L., Ellington W. R., Ingwall J. S., Burt C. T., Helman S. I., Koutcher J. NMR spectroscopy as an investigative technique in physiology. FASEB J. 1987 Jul;1(1):22–31. doi: 10.1096/fasebj.1.1.3301494. [DOI] [PubMed] [Google Scholar]
- Hsu C. K., Melby E. C., Jr, Altman N. H. Eimeria phocae sp. n. from the harbor seal (Phoca vitulina concolor). J Parasitol. 1974 Jun;60(3):399–402. [PubMed] [Google Scholar]
- Katz L. A., Swain J. A., Portman M. A., Balaban R. S. Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol. 1989 Jan;256(1 Pt 2):H265–H274. doi: 10.1152/ajpheart.1989.256.1.H265. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Halloran K. H., Taylor J. F., Downing S. E. Coronary flow and myocardial metabolism in newborn lambs: effects of hypoxia and acidemia. Am J Physiol. 1973 Jun;224(6):1381–1387. doi: 10.1152/ajplegacy.1973.224.6.1381. [DOI] [PubMed] [Google Scholar]
- Lister G., Walter T. K., Versmold H. T., Dallman P. R., Rudolph A. M. Oxygen delivery in lambs: cardiovascular and hematologic development. Am J Physiol. 1979 Dec;237(6):H668–H675. doi: 10.1152/ajpheart.1979.237.6.H668. [DOI] [PubMed] [Google Scholar]
- Pieper G. M., Todd G. L., Wu S. T., Salhany J. M., Clayton F. C., Eliot R. S. Attenuation of myocardial acidosis by propranolol during ischaemic arrest and reperfusion: evidence with 31P nuclear magnetic resonance. Cardiovasc Res. 1980 Dec;14(11):646–653. doi: 10.1093/cvr/14.11.646. [DOI] [PubMed] [Google Scholar]
- Portman M. A., Heineman F. W., Balaban R. S. Developmental changes in the relation between phosphate metabolites and oxygen consumption in the sheep heart in vivo. J Clin Invest. 1989 Feb;83(2):456–464. doi: 10.1172/JCI113904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Portman M. A., James S., Heineman F. W., Balaban R. S. Simultaneous monitoring of coronary blood flow and 31P NMR detected myocardial metabolites. Magn Reson Med. 1988 Jun;7(2):243–247. doi: 10.1002/mrm.1910070213. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Tofts P., Wray S. Changes in brain phosphorus metabolites during the post-natal development of the rat. J Physiol. 1985 Feb;359:417–429. doi: 10.1113/jphysiol.1985.sp015593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walters F. J., Wilson G. J., Steward D. J., Domenech R. J., MacGregor D. C. Intramyocardial pH as an index of myocardial metabolism during cardiac surgery. J Thorac Cardiovasc Surg. 1979 Sep;78(3):319–330. [PubMed] [Google Scholar]
- Wolff S. D., Eng C., Balaban R. S. NMR studies of renal phosphate metabolites in vivo: effects of hydration and dehydration. Am J Physiol. 1988 Oct;255(4 Pt 2):F581–F589. doi: 10.1152/ajprenal.1988.255.4.F581. [DOI] [PubMed] [Google Scholar]
- von Planta M., Weil M. H., Gazmuri R. J., Bisera J., Rackow E. C. Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation. Circulation. 1989 Sep;80(3):684–692. doi: 10.1161/01.cir.80.3.684. [DOI] [PubMed] [Google Scholar]
