Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Mar;87(3):800–810. doi: 10.1172/JCI115083

Renal nerves modulate renin gene expression in the developing rat kidney with ureteral obstruction.

S S el-Dahr 1, R A Gomez 1, M S Gray 1, M J Peach 1, R M Carey 1, R L Chevalier 1
PMCID: PMC329867  PMID: 1671866

Abstract

Chronic unilateral ureteral obstruction (UUO) in newborn rats activates renin gene expression in the obstructed kidney, and increases renin distribution along afferent glomerular arterioles in both kidneys. To investigate the role of the renal nerves in this response, 2-d-old Sprague-Dawley rats were subjected to UUO or sham operation. Chemical sympathectomy was performed by injection of guanethidine, whereas, control groups received saline vehicle. At 4-5 wk, renal renin distribution was determined by immunocytochemistry, and renin mRNA levels were determined by Northern blot hybridization. Compared to the saline-treated rats with UUO, renin remained localized to the juxtaglomerular region in both kidneys of rats with UUO receiving guanethidine (P less than 0.05). Moreover, renin mRNA levels were eightfold lower in obstructed kidneys of rats receiving guanethidine than in those receiving saline. Additional groups of rats with UUO were subjected to unilateral mechanical renal denervation: renin gene expression in the obstructed kidney was suppressed by ipsilateral but not by contralateral renal denervation. These findings indicate that either chemical or mechanical denervation suppressed the increase in renin gene expression of the neonatal kidney with ipsilateral UUO. We conclude that the renal sympathetic nerves modulate renin gene expression in the developing kidney with chronic UUO.

Full text

PDF
800

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Meyer T. W., Rennke H. G., Brenner B. M. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1985 Aug;76(2):612–619. doi: 10.1172/JCI112013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barajas L. Innervation of the renal cortex. Fed Proc. 1978 Apr;37(5):1192–1201. [PubMed] [Google Scholar]
  3. Barajas L., Wang P. Localization of tritiated norepinephrine in the renal arteriolar nerves. Anat Rec. 1979 Nov;195(3):525–534. doi: 10.1002/ar.1091950311. [DOI] [PubMed] [Google Scholar]
  4. Bührle C. P., Hackenthal E., Helmchen U., Lackner K., Nobiling R., Steinhausen M., Taugner R. The hydronephrotic kidney of the mouse as a tool for intravital microscopy and in vitro electrophysiological studies of renin-containing cells. Lab Invest. 1986 Apr;54(4):462–472. [PubMed] [Google Scholar]
  5. Caccamo D., Katsetos C. D., Herman M. M., Frankfurter A., Collins V. P., Rubinstein L. J. Immunohistochemistry of a spontaneous murine ovarian teratoma with neuroepithelial differentiation. Neuron-associated beta-tubulin as a marker for primitive neuroepithelium. Lab Invest. 1989 Mar;60(3):390–398. [PubMed] [Google Scholar]
  6. Carmines P. K., Tanner G. A. Angiotensin in the hemodynamic response to chronic nephron obstruction. Am J Physiol. 1983 Jul;245(1):F75–F82. doi: 10.1152/ajprenal.1983.245.1.F75. [DOI] [PubMed] [Google Scholar]
  7. Chevalier R. L., Gomez R. A. Response of the renin-angiotensin system to relief of neonatal ureteral obstruction. Am J Physiol. 1988 Dec;255(6 Pt 2):F1070–F1077. doi: 10.1152/ajprenal.1988.255.6.F1070. [DOI] [PubMed] [Google Scholar]
  8. Chevalier R. L., Jones C. E. Contribution of endogenous vasoactive compounds to renal vascular resistance in neonatal chronic partial ureteral obstruction. J Urol. 1986 Aug;136(2):532–535. doi: 10.1016/s0022-5347(17)44938-x. [DOI] [PubMed] [Google Scholar]
  9. Chevalier R. L., Peach M. J. Hemodynamic effects of enalapril on neonatal chronic partial ureteral obstruction. Kidney Int. 1985 Dec;28(6):891–898. doi: 10.1038/ki.1985.215. [DOI] [PubMed] [Google Scholar]
  10. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Francisco L. L., Hoversten L. G., DiBona G. F. Renal nerves in the compensatory adaptation to ureteral occlusion. Am J Physiol. 1980 Mar;238(3):F229–F234. doi: 10.1152/ajprenal.1980.238.3.F229. [DOI] [PubMed] [Google Scholar]
  13. Gomez R. A., Lynch K. R., Chevalier R. L., Wilfong N., Everett A., Carey R. M., Peach M. J. Renin and angiotensinogen gene expression in maturing rat kidney. Am J Physiol. 1988 Apr;254(4 Pt 2):F582–F587. doi: 10.1152/ajprenal.1988.254.4.F582. [DOI] [PubMed] [Google Scholar]
  14. Huland H., Leichtweiss H. P., Augustin H. J. Effect of angiotensin II antagonist, alpha-receptor blockage, and denervation on blood flow reduction in experimental, chronic hydronephrosis. Invest Urol. 1980 Nov;18(3):203–206. [PubMed] [Google Scholar]
  15. Ice K. S., Geary K. M., Gomez R. A., Johns D. W., Peach M. J., Carey R. M. Cell and molecular studies of renin secretion. Clin Exp Hypertens A. 1988;10(6):1169–1187. doi: 10.1080/07300077.1988.11878809. [DOI] [PubMed] [Google Scholar]
  16. Johnson E. M., Jr, O'Brien F., Werbitt R. Modification and characterization of the permanent sympathectomy produced by the administration of guanethidine to newborn rats. Eur J Pharmacol. 1976 May;37(1):45–54. doi: 10.1016/0014-2999(76)90006-6. [DOI] [PubMed] [Google Scholar]
  17. Kopp U. C., Olson L. A., DiBona G. F. Renorenal reflex responses to mechano- and chemoreceptor stimulation in the dog and rat. Am J Physiol. 1984 Jan;246(1 Pt 2):F67–F77. doi: 10.1152/ajprenal.1984.246.1.F67. [DOI] [PubMed] [Google Scholar]
  18. McDougal W. S. Pharmacologic preservation of renal mass and function in obstructive uropathy. J Urol. 1982 Aug;128(2):418–421. doi: 10.1016/s0022-5347(17)52950-x. [DOI] [PubMed] [Google Scholar]
  19. Naruse K., Takii Y., Inagami T. Immunohistochemical localization of renin in luteinizing hormone-producing cells of rat pituitary. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7579–7583. doi: 10.1073/pnas.78.12.7579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Osborn J. L., DiBona G. F., Thames M. D. Beta-1 receptor mediation of renin secretion elicited by low-frequency renal nerve stimulation. J Pharmacol Exp Ther. 1981 Feb;216(2):265–269. [PubMed] [Google Scholar]
  21. Pelayo J. C., Blantz R. C. Analysis of renal denervation in the hydropenic rat: interactions with angiotensin II. Am J Physiol. 1984 Jan;246(1 Pt 2):F87–F95. doi: 10.1152/ajprenal.1984.246.1.F87. [DOI] [PubMed] [Google Scholar]
  22. Pelayo J. C., Ziegler M. G., Jose P. A., Blantz R. C. Renal denervation in the rat: analysis of glomerular and proximal tubular function. Am J Physiol. 1983 Jan;244(1):F70–F77. doi: 10.1152/ajprenal.1983.244.1.F70. [DOI] [PubMed] [Google Scholar]
  23. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  24. Robillard J. E., Nakamura K. T., Wilkin M. K., McWeeny O. J., DiBona G. F. Ontogeny of renal hemodynamic response to renal nerve stimulation in sheep. Am J Physiol. 1987 Apr;252(4 Pt 2):F605–F612. doi: 10.1152/ajprenal.1987.252.4.F605. [DOI] [PubMed] [Google Scholar]
  25. Takii Y., Figueiredo A. F., Inagami T. Application of immunochemical methods to the identification and characterization of rat kidney inactive renin. Hypertension. 1985 Mar-Apr;7(2):236–243. doi: 10.1161/01.hyp.7.2.236. [DOI] [PubMed] [Google Scholar]
  26. Yarger W. E., Schocken D. D., Harris R. H. Obstructive nephropathy in the rat: possible roles for the renin-angiotensin system, prostaglandins, and thromboxanes in postobstructive renal function. J Clin Invest. 1980 Feb;65(2):400–412. doi: 10.1172/JCI109683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. el-Dahr S. S., Gomez R. A., Gray M. S., Peach M. J., Carey R. M., Chevalier R. L. In situ localization of renin and its mRNA in neonatal ureteral obstruction. Am J Physiol. 1990 Apr;258(4 Pt 2):F854–F862. doi: 10.1152/ajprenal.1990.258.4.F854. [DOI] [PubMed] [Google Scholar]
  28. el-Dahr S. S., Gomez R. A., Khare G., Peach M. J., Carey R. M., Chevalier R. L. Expression of renin and its mRNA in the adult rat kidney with chronic ureteral obstruction. Am J Kidney Dis. 1990 Jun;15(6):575–582. doi: 10.1016/s0272-6386(12)80529-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES