Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Mar;87(3):940–948. doi: 10.1172/JCI115101

Guanine ribonucleotide depletion inhibits T cell activation. Mechanism of action of the immunosuppressive drug mizoribine.

L A Turka 1, J Dayton 1, G Sinclair 1, C B Thompson 1, B S Mitchell 1
PMCID: PMC329885  PMID: 1999502

Abstract

The immunosuppressive drug, mizoribine, has been used to prevent rejection of organ allografts in humans and in animal models. Based on studies in cell lines, mizoribine has been postulated to be an inhibitor of inosine monophosphate (IMP) dehydrogenase (EC1.2.1.14), a pivotal enzyme in the formation of guanine ribonucleotides from IMP. To further characterize the mechanism of action of this drug, we studied the effect of mizoribine on human peripheral blood T cells stimulated with alloantigen, anti-CD3 MAb, or pharmacologic mitogens. Mizoribine (1-50 micrograms/ml) was able to inhibit T cell proliferation by 10-100% in a dose-dependent fashion to all stimuli tested. Measurements of purine ribonucleotide pools by HPLC showed that mizoribine led to a decrease in intracellular GTP levels, and that repletion of GTP reversed its antiproliferative effects. We also examined sequential events occurring after T cell stimulation. Early events in T cell activation, as assessed by steady-state mRNA levels of c-myc, IL-2, c-myb, histone, and cdc2 kinase, as well as surface IL-2 receptor expression, were unaffected. However, cell cycle analysis revealed decreased numbers of cells in S, G2, and M phases, and showed that the G1/S block was reversed with GTP repletion. These data indicate that mizoribine has an effect on T cell proliferation by a mechanism distinct from that of cyclosporine or corticosteroids, and therefore may be useful in combination immunosuppressive regimens.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amemiya H., Suzuki S., Niiya S., Watanabe H., Kotake T. Synergistic effect of cyclosporine and mizoribine on survival of dog renal allografts. Transplantation. 1988 Nov;46(5):768–771. [PubMed] [Google Scholar]
  2. Amemiya H., Suzuki S., Watanabe H., Hayashi R., Niiya S. Synergistically enhanced immunosuppressive effect by combined use of cyclosporine and mizoribine. Transplant Proc. 1989 Feb;21(1 Pt 1):956–958. [PubMed] [Google Scholar]
  3. Aso K., Uchida H., Sato K., Yokota K., Osakabe T., Nakayama Y., Ohkubo M., Kumano K., Endo T., Koshiba K. Immunosuppression with low-dose cyclosporine combined with bredinin and prednisolone. Transplant Proc. 1987 Feb;19(1 Pt 3):1955–1958. [PubMed] [Google Scholar]
  4. Bentley D. L., Groudine M. Novel promoter upstream of the human c-myc gene and regulation of c-myc expression in B-cell lymphomas. Mol Cell Biol. 1986 Oct;6(10):3481–3489. doi: 10.1128/mcb.6.10.3481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Churilla A. M., Braciale T. J., Braciale V. L. Regulation of T lymphocyte proliferation. Interleukin 2-mediated induction of c-myb gene expression is dependent on T lymphocyte activation state. J Exp Med. 1989 Jul 1;170(1):105–121. doi: 10.1084/jem.170.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark S. C., Arya S. K., Wong-Staal F., Matsumoto-Kobayashi M., Kay R. M., Kaufman R. J., Brown E. L., Shoemaker C., Copeland T., Oroszlan S. Human T-cell growth factor: partial amino acid sequence, cDNA cloning, and organization and expression in normal and leukemic cells. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2543–2547. doi: 10.1073/pnas.81.8.2543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen A., Gudas L. J., Ammann A. J., Staal G. E., Martin D. W., Jr Deoxyguanosine triphosphate as a possible toxic metabolite in the immunodeficiency associated with purine nucleoside phosphorylase deficiency. J Clin Invest. 1978 May;61(5):1405–1409. doi: 10.1172/JCI109058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen M. B., Maybaum J., Sadee W. Guanine nucleotide depletion and toxicity in mouse T lymphoma (S-49) cells. J Biol Chem. 1981 Aug 25;256(16):8713–8717. [PubMed] [Google Scholar]
  10. Downward J., Graves J. D., Warne P. H., Rayter S., Cantrell D. A. Stimulation of p21ras upon T-cell activation. Nature. 1990 Aug 23;346(6286):719–723. doi: 10.1038/346719a0. [DOI] [PubMed] [Google Scholar]
  11. Elliott J. F., Lin Y., Mizel S. B., Bleackley R. C., Harnish D. G., Paetkau V. Induction of interleukin 2 messenger RNA inhibited by cyclosporin A. Science. 1984 Dec 21;226(4681):1439–1441. doi: 10.1126/science.6334364. [DOI] [PubMed] [Google Scholar]
  12. Epinette W. W., Parker C. M., Jones E. L., Greist M. C. Mycophenolic acid for psoriasis. A review of pharmacology, long-term efficacy, and safety. J Am Acad Dermatol. 1987 Dec;17(6):962–971. doi: 10.1016/s0190-9622(87)70285-0. [DOI] [PubMed] [Google Scholar]
  13. Gregory C. R., Gourley I. M., Cain G. R., Broaddus T. W., Cowgill L. D., Willits N. H., Patz J. D., Ishizaki G. Effects of combination cyclosporine/mizoribine immunosuppression on canine renal allograft recipients. Transplantation. 1988 May;45(5):856–859. doi: 10.1097/00007890-198805000-00003. [DOI] [PubMed] [Google Scholar]
  14. Gregory C. R., Gourley I. M., Haskins S. C., Cain G. R., Ishizaki G., Cowgill L. D., Willits N. H., Patz J. D. Effects of mizoribine on canine renal allograft recipients. Am J Vet Res. 1988 Mar;49(3):305–311. [PubMed] [Google Scholar]
  15. Ichikawa Y., Ihara H., Takahara S., Takada K., Shrestha G. R., Ishibashi M., Arima M., Sagawa S., Sonoda T. The immunosuppressive mode of action of mizoribine. Transplantation. 1984 Sep;38(3):262–267. doi: 10.1097/00007890-198409000-00013. [DOI] [PubMed] [Google Scholar]
  16. June C. H., Ledbetter J. A., Gillespie M. M., Lindsten T., Thompson C. B. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol. 1987 Dec;7(12):4472–4481. doi: 10.1128/mcb.7.12.4472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. June C. H., Ledbetter J. A., Lindsten T., Thompson C. B. Evidence for the involvement of three distinct signals in the induction of IL-2 gene expression in human T lymphocytes. J Immunol. 1989 Jul 1;143(1):153–161. [PubMed] [Google Scholar]
  18. Kazmers I. S., Mitchell B. S., Dadonna P. E., Wotring L. L., Townsend L. B., Kelley W. N. Inhibition of purine nucleoside phosphorylase by 8-aminoguanosine: selective toxicity for T lymphoblasts. Science. 1981 Dec 4;214(4525):1137–1139. doi: 10.1126/science.6795718. [DOI] [PubMed] [Google Scholar]
  19. Kelley W. N., Rosenbloom F. M., Seegmiller J. E. The effects of azathioprine (imuran) on purine synthesis in clinical disorders of purine metabolism. J Clin Invest. 1967 Sep;46(9):1518–1529. doi: 10.1172/JCI105643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koyama H., Tsuji M. Genetic and biochemical studies on the activation and cytotoxic mechanism of bredinin, a potent inhibitor of purine biosynthesis in mammalian cells. Biochem Pharmacol. 1983 Dec 1;32(23):3547–3553. doi: 10.1016/0006-2952(83)90301-5. [DOI] [PubMed] [Google Scholar]
  21. Krieg P. A., Melton D. A. Formation of the 3' end of histone mRNA by post-transcriptional processing. Nature. 1984 Mar 8;308(5955):203–206. doi: 10.1038/308203a0. [DOI] [PubMed] [Google Scholar]
  22. Kusaba R., Otubo O., Sugimoto H., Takahashi I., Yamada Y., Yamauchi J., Akiyama N., Inou T. Immunosuppressive effect of bredinin in the management of patients with renal transplantation. Proc Eur Dial Transplant Assoc. 1981;18:420–425. [PubMed] [Google Scholar]
  23. Ledbetter J. A., June C. H., Grosmaire L. S., Rabinovitch P. S. Crosslinking of surface antigens causes mobilization of intracellular ionized calcium in T lymphocytes. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1384–1388. doi: 10.1073/pnas.84.5.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ledbetter J. A., Martin P. J., Spooner C. E., Wofsy D., Tsu T. T., Beatty P. G., Gladstone P. Antibodies to Tp67 and Tp44 augment and sustain proliferative responses of activated T cells. J Immunol. 1985 Oct;135(4):2331–2336. [PubMed] [Google Scholar]
  25. Ledbetter J. A., Parsons M., Martin P. J., Hansen J. A., Rabinovitch P. S., June C. H. Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression. J Immunol. 1986 Nov 15;137(10):3299–3305. [PubMed] [Google Scholar]
  26. Ledbetter J. A., Tsu T. T., Clark E. A. Covalent association between human thymus leukemia-like antigens and CD8(Tp32) molecules. J Immunol. 1985 Jun;134(6):4250–4254. [PubMed] [Google Scholar]
  27. Lee M. G., Nurse P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature. 1987 May 7;327(6117):31–35. doi: 10.1038/327031a0. [DOI] [PubMed] [Google Scholar]
  28. Lindsten T., June C. H., Thompson C. B. Multiple mechanisms regulate c-myc gene expression during normal T cell activation. EMBO J. 1988 Sep;7(9):2787–2794. doi: 10.1002/j.1460-2075.1988.tb03133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Martin D. W., Jr, Gelfand E. W. Biochemistry of diseases of immunodevelopment. Annu Rev Biochem. 1981;50:845–877. doi: 10.1146/annurev.bi.50.070181.004213. [DOI] [PubMed] [Google Scholar]
  30. Martin P. J., Longton G., Ledbetter J. A., Newman W., Braun M. P., Beatty P. G., Hansen J. A. Identification and functional characterization of two distinct epitopes on the human T cell surface protein Tp50. J Immunol. 1983 Jul;131(1):180–185. [PubMed] [Google Scholar]
  31. Marumo F., Okubo M., Yokota K., Uchida H., Kumano K., Endo T., Watanabe K., Kashiwagi N. A clinical study of renal transplant patients receiving triple-drug therapy--cyclosporine A, mizoribine, and prednisolone. Transplant Proc. 1988 Feb;20(1 Suppl 1):406–409. [PubMed] [Google Scholar]
  32. Melink T. J., Von Hoff D. D., Kuhn J. G., Hersh M. R., Sternson L. A., Patton T. F., Siegler R., Boldt D. H., Clark G. M. Phase I evaluation and pharmacokinetics of tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide, NSC 286193). Cancer Res. 1985 Jun;45(6):2859–2865. [PubMed] [Google Scholar]
  33. Mizuno K., Tsujino M., Takada M., Hayashi M., Atsumi K. Studies on bredinin. I. Isolation, characterization and biological properties. J Antibiot (Tokyo) 1974 Oct;27(10):775–782. doi: 10.7164/antibiotics.27.775. [DOI] [PubMed] [Google Scholar]
  34. O'Shea J. J., Urdahl K. B., Luong H. T., Chused T. M., Samelson L. E., Klausner R. D. Aluminum fluoride induces phosphatidylinositol turnover, elevation of cytoplasmic free calcium, and phosphorylation of the T cell antigen receptor in murine T cells. J Immunol. 1987 Nov 15;139(10):3463–3469. [PubMed] [Google Scholar]
  35. Okubo M., Masaki Y., Kamata K., Sato N., Inoue K., Umetani N. Immunosuppressive mode of action of deoxyspergualin in mice, as compared with cyclosporine A and mizoribine. Transplant Proc. 1989 Feb;21(1 Pt 1):1085–1087. [PubMed] [Google Scholar]
  36. Osakabe T., Uchida H., Masaki Y., Yokota K., Sato K., Nakayama Y., Ohkubo M., Kumano K., Endo T., Watanabe K. Studies on immunosuppression with low-dose cyclosporine combined with mizoribine in experimental and clinical cadaveric renal allotransplantation. Transplant Proc. 1989 Feb;21(1 Pt 2):1598–1600. [PubMed] [Google Scholar]
  37. Pardee A. B. G1 events and regulation of cell proliferation. Science. 1989 Nov 3;246(4930):603–608. doi: 10.1126/science.2683075. [DOI] [PubMed] [Google Scholar]
  38. Sakaguchi K., Tsujino M., Hayashi M., Kawai K., Mizuno K., Hayano K. Mode of action of bredinin with guanylic acid on L5178Y mouse leukemia cells. J Antibiot (Tokyo) 1976 Dec;29(12):1320–1327. doi: 10.7164/antibiotics.29.1320. [DOI] [PubMed] [Google Scholar]
  39. Sidi Y., Mitchell B. S. 2'-deoxyguanosine toxicity for B and mature T lymphoid cell lines is mediated by guanine ribonucleotide accumulation. J Clin Invest. 1984 Nov;74(5):1640–1648. doi: 10.1172/JCI111580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Simmonds H. A., Watson A. R., Webster D. R., Sahota A., Perrett D. GTP depletion and other erythrocyte abnormalities in inherited PNP deficiency. Biochem Pharmacol. 1982 Mar 15;31(6):941–946. doi: 10.1016/0006-2952(82)90324-0. [DOI] [PubMed] [Google Scholar]
  41. Snyder D. S., Unanue E. R. Corticosteroids inhibit murine macrophage Ia expression and interleukin 1 production. J Immunol. 1982 Nov;129(5):1803–1805. [PubMed] [Google Scholar]
  42. Sood A. K., Pereira D., Weissman S. M. Isolation and partial nucleotide sequence of a cDNA clone for human histocompatibility antigen HLA-B by use of an oligodeoxynucleotide primer. Proc Natl Acad Sci U S A. 1981 Jan;78(1):616–620. doi: 10.1073/pnas.78.1.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Suzuki S., Hijioka T., Sakakibara I., Amemiya H. The synergistic effect of cyclosporine and mizoribine on heterotopic heart and partial-lung transplantation in rats. Transplantation. 1987 May;43(5):743–744. [PubMed] [Google Scholar]
  44. Tajima A., Hata M., Ohta N., Ohtawara Y., Suzuki K., Aso Y. Bredinin treatment in clinical kidney allografting. Transplantation. 1984 Aug;38(2):116–118. doi: 10.1097/00007890-198408000-00005. [DOI] [PubMed] [Google Scholar]
  45. Takahara S., Fukunishi T., Kokado Y., Ichikawa Y., Ishibashi M., Nagano S., Sonoda T. Combined immunosuppression with low-dose cyclosporine, mizoribine, and prednisolone. Transplant Proc. 1988 Jun;20(3 Suppl 3):147–151. [PubMed] [Google Scholar]
  46. Thompson C. B., Challoner P. B., Neiman P. E., Groudine M. Expression of the c-myb proto-oncogene during cellular proliferation. 1986 Jan 30-Feb 5Nature. 319(6052):374–380. doi: 10.1038/319374a0. [DOI] [PubMed] [Google Scholar]
  47. Thompson C. B., Lindsten T., Ledbetter J. A., Kunkel S. L., Young H. A., Emerson S. G., Leiden J. M., June C. H. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1333–1337. doi: 10.1073/pnas.86.4.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Williams M. E., Lichtman A. H., Abbas A. K. Anti-CD3 antibody induces unresponsiveness to IL-2 in Th1 clones but not in Th2 clones. J Immunol. 1990 Feb 15;144(4):1208–1214. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES