Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Mar;87(3):955–961. doi: 10.1172/JCI115103

Role of adenosine triphosphate (ATP) and NaK ATPase in the inhibition of proximal tubule transport with intracellular cystine loading.

C Coor 1, R F Salmon 1, R Quigley 1, D Marver 1, M Baum 1
PMCID: PMC329887  PMID: 1847941

Abstract

Cellular cystine loading with cystine dimethyl ester inhibits volume absorption, transepithelial potential difference, glucose transport, and bicarbonate transport in proximal convoluted tubules perfused in vitro. This study examined the roles of ATP and NaK ATPase in this in vitro model of the Fanconi syndrome of cystinosis. Intracellular ATP was measured using the luciferin-luciferase assay. Intracellular ATP was reduced by 60% in proximal convoluted tubules incubated with 0.5 mM cystine dimethyl ester for 15 min at 37 degrees C (P less than 0.001). Incubation of cystine loaded tubules with 1 mM exogenous ATP increased intracellular ATP to levels not significantly different than that of controls. On the other hand, Vmax NaK ATPase activity was unchanged even though the incubation times and the concentration of cystine dimethyl ester were doubled to 30 min and 1 mM, respectively. In proximal convoluted tubules perfused in vitro, 0.5 mM cystine dimethyl ester resulted in an 89% inhibition in volume absorption (0.81 +/- 0.14 to 0.09 +/- 0.09 nl/mm.min), while there was only a 45% inhibition in volume absorption (P less than 0.01) due to cellular cystine loading in the presence of 1 mM lumen and bath ATP (0.94 +/- 0.05 to 0.52 +/- 0.11 nl/mm.min). These data demonstrate that proximal tubule cellular cystine loading decreases cellular ATP concentration, but does not directly inhibit NaK ATPase activity. The inhibition in transport and decrease in intracellular ATP due to cellular cystine loading was ameliorated by exogenous ATP. These data are consistent with cellular ATP depletion playing a major role in the inhibition of proximal tubule transport due to intracellular cystine loading.

Full text

PDF
955

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANGIELSKI S., ROGULSKI J. Effect of maleic acid on the kidney. I. Oxidation of Krebs cycle intermediates by various tissues of maleate-intoxicated rats. Acta Biochim Pol. 1962;9:357–365. [PubMed] [Google Scholar]
  2. Baum M. Insulin stimulates volume absorption in the rabbit proximal convoluted tubule. J Clin Invest. 1987 Apr;79(4):1104–1109. doi: 10.1172/JCI112925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burch H. B., Choi S., Dence C. N., Alvey T. R., Cole B. R., Lowry O. H. Metabolic effects of large fructose loads in different parts of the rat nephron. J Biol Chem. 1980 Sep 10;255(17):8239–8244. [PubMed] [Google Scholar]
  4. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  5. Chaudry I. H. Does ATP cross the cell plasma membrane. Yale J Biol Med. 1982 Jan-Feb;55(1):1–10. [PMC free article] [PubMed] [Google Scholar]
  6. Coulson R. Metabolism and excretion of exogenous adenosine 3':5'-monophosphate and guanosine 3':5'-monophosphate. Studies in the isolated perfused rat kidney and in the intact rat. J Biol Chem. 1976 Aug 25;251(16):4958–4967. [PubMed] [Google Scholar]
  7. Foreman J. W., Bowring M. A., Lee J., States B., Segal S. Effect of cystine dimethylester on renal solute handling and isolated renal tubule transport in the rat: a new model of the Fanconi syndrome. Metabolism. 1987 Dec;36(12):1185–1191. doi: 10.1016/0026-0495(87)90246-0. [DOI] [PubMed] [Google Scholar]
  8. Gahl W. A., Bashan N., Tietze F., Bernardini I., Schulman J. D. Cystine transport is defective in isolated leukocyte lysosomes from patients with cystinosis. Science. 1982 Sep 24;217(4566):1263–1265. doi: 10.1126/science.7112129. [DOI] [PubMed] [Google Scholar]
  9. Gahl W. A., Tietze F., Bashan N., Bernardini I., Raiford D., Schulman J. D. Characteristics of cystine counter-transport in normal and cystinotic lysosome-rich leucocyte granular fractions. Biochem J. 1983 Nov 15;216(2):393–400. doi: 10.1042/bj2160393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gahl W. A., Tietze F., Bashan N., Steinherz R., Schulman J. D. Defective cystine exodus from isolated lysosome-rich fractions of cystinotic leucocytes. J Biol Chem. 1982 Aug 25;257(16):9570–9575. [PubMed] [Google Scholar]
  11. Gluck S., Kelly S., Al-Awqati Q. The proton translocating ATPase responsible for urinary acidification. J Biol Chem. 1982 Aug 25;257(16):9230–9233. [PubMed] [Google Scholar]
  12. Goldman R., Kaplan A. Rupture of rat liver lysosomes mediated by L-amino acid esters. Biochim Biophys Acta. 1973 Aug 22;318(2):205–216. doi: 10.1016/0005-2736(73)90114-4. [DOI] [PubMed] [Google Scholar]
  13. Kramer H. J., Gonick H. C. Experimental Fanconi syndrome. I. Effect of maleic acid on renal cortical Na-K-ATPase activity and ATP levels. J Lab Clin Med. 1970 Nov;76(5):799–808. [PubMed] [Google Scholar]
  14. Mandel L. J., Takano T., Soltoff S. P., Murdaugh S. Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia. J Clin Invest. 1988 Apr;81(4):1255–1264. doi: 10.1172/JCI113443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maxild J. Effect of externally added ATP and related compounds on active transport of p-aminohippurate and metabolism in cortical slices of the rabbit kidney. Arch Int Physiol Biochim. 1978 Aug;86(3):509–530. doi: 10.3109/13813457809055920. [DOI] [PubMed] [Google Scholar]
  16. Morris R. C., Jr An experimental renal acidification defect in patients with hereditary fructose intolerance. I. Its resemblance to renal tubular acidosis. J Clin Invest. 1968 Jun;47(6):1389–1398. doi: 10.1172/JCI105830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morris R. C., Jr, Nigon K., Reed E. B. Evidence that the severity of depletion of inorganic phosphate determines the severity of the disturbance of adenine nucleotide metabolism in the liver and renal cortex of the fructose-loaded rat. J Clin Invest. 1978 Jan;61(1):209–220. doi: 10.1172/JCI108920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Neil R. G., Dubinsky W. P. Micromethodology for measuring ATPase activity in renal tubules: mineralocorticoid influence. Am J Physiol. 1984 Nov;247(5 Pt 1):C314–C320. doi: 10.1152/ajpcell.1984.247.5.C314. [DOI] [PubMed] [Google Scholar]
  19. Pant H. C., Terakawa S., Yoshioka T., Tasaki I., Gainer H. Evidence for the utilization of extracellular [gamma-32P]ATP for the phosphorylation of intracellular proteins in the squid giant axon. Biochim Biophys Acta. 1979 Jan 4;582(1):107–114. doi: 10.1016/0304-4165(79)90293-9. [DOI] [PubMed] [Google Scholar]
  20. Patrick A. D., Lake B. D. Cystinosis: electron microscopic evidence of lysosomal storage of cystine in lymph node. J Clin Pathol. 1968 Sep;21(5):571–575. doi: 10.1136/jcp.21.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reeves J. P. Accumulation of amino acids by lysosomes incubated with amino acid methyl esters. J Biol Chem. 1979 Sep 25;254(18):8914–8921. [PubMed] [Google Scholar]
  22. Saggerson E. D., Carpenter C. A., Veiga J. A. Stimulation of renal gluconeogenesis by exogenous adenine nucleotides. Biochim Biophys Acta. 1983 Jan 4;755(1):119–126. doi: 10.1016/0304-4165(83)90281-7. [DOI] [PubMed] [Google Scholar]
  23. Salmon R. F., Baum M. Intracellular cystine loading inhibits transport in the rabbit proximal convoluted tubule. J Clin Invest. 1990 Feb;85(2):340–344. doi: 10.1172/JCI114443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schneider J. A., Bradley K., Seegmiller J. E. Increased cystine in leukocytes from individuals homozygous and heterozygous for cystinosis. Science. 1967 Sep 15;157(3794):1321–1322. doi: 10.1126/science.157.3794.1321. [DOI] [PubMed] [Google Scholar]
  25. Schneider J. A., Rosenbloom F. M., Bradley K. H., Seegmiller J. E. Increased free-cystine content of fibroblasts cultured from patients with cystinosis. Biochem Biophys Res Commun. 1967 Nov 30;29(4):527–531. doi: 10.1016/0006-291x(67)90516-5. [DOI] [PubMed] [Google Scholar]
  26. Schulman J. D., Bradley K. H., Seegmiller J. E. Cystine: compartmentalization within lysosomes in cystinotic leukocytes. Science. 1969 Nov 28;166(3909):1152–1154. doi: 10.1126/science.166.3909.1152. [DOI] [PubMed] [Google Scholar]
  27. Schulman J. D., Bradley K. H. The metabolism of amino acids, peptides, and disulfides in lysosomes of fibroblasts cultured from normal individuals and those with cystinosis. J Exp Med. 1970 Dec 1;132(6):1090–1104. doi: 10.1084/jem.132.6.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steinherz R., Tietze F., Gahl W. A., Triche T. J., Chiang H., Modesti A., Schulman J. D. Cystine accumulation and clearance by normal and cystinotic leukocytes exposed to cystine dimethyl ester. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4446–4450. doi: 10.1073/pnas.79.14.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Trimble M. E., Coulson R. Adenosine transport in perfused rat kidney and renal cortical membrane vesicles. Am J Physiol. 1984 Jun;246(6 Pt 2):F794–F803. doi: 10.1152/ajprenal.1984.246.6.F794. [DOI] [PubMed] [Google Scholar]
  30. Uchida S., Endou H. Substrate specificity to maintain cellular ATP along the mouse nephron. Am J Physiol. 1988 Nov;255(5 Pt 2):F977–F983. doi: 10.1152/ajprenal.1988.255.5.F977. [DOI] [PubMed] [Google Scholar]
  31. Weinberg J. M., Davis J. A., Lawton A., Abarzua M. Modulation of cell nucleotide levels of isolated kidney tubules. Am J Physiol. 1988 Mar;254(3 Pt 2):F311–F322. doi: 10.1152/ajprenal.1988.254.3.F311. [DOI] [PubMed] [Google Scholar]
  32. Weinberg J. M., Humes H. D. Increases of cell ATP produced by exogenous adenine nucleotides in isolated rabbit kidney tubules. Am J Physiol. 1986 Apr;250(4 Pt 2):F720–F733. doi: 10.1152/ajprenal.1986.250.4.F720. [DOI] [PubMed] [Google Scholar]
  33. Xie X. S., Stone D. K. Isolation and reconstitution of the clathrin-coated vesicle proton translocating complex. J Biol Chem. 1986 Feb 25;261(6):2492–2495. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES