Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Mar;87(3):996–1001. doi: 10.1172/JCI115108

Endogenous blockade of 1,25-dihydroxyvitamin D-receptor binding in New World primate cells.

M A Gacad 1, J S Adams 1
PMCID: PMC329892  PMID: 1847942

Abstract

When assessed by 1,25-dihydroxyvitamin D3 (1,25(OH)2-D3)-receptor (VDR) binding analysis or 1,25(OH)2-D3-VDR-directed bioresponsiveness, cultured cells from some New World primates (platyrrhines) demonstrate a variable decrement in VDR when compared with Old World primate (catarrhine) cells. To study this difference in VDR expression among primates, we performed immunoblot analysis of the VDR in cultured dermal fibroblasts from platyrrhines in the genera Pithecia and Aotus and from catarrhines in the genus Presbytis; although a platyrrhine, the owl monkey (Aotus) expresses a VDR of the catarrhine (wild type) phenotype. Despite a 10-fold difference in the content of VDR by ligand binding analysis among cells from the three prototypic primate genera, there was a less than or equal to 10% difference in the steady-state level of 50-kD VDR detected by immunoblot analysis of cellular extracts. We investigated this apparent discrepancy in the content of VDR in immunoblots and ligand binding analyses by mixing VDR-containing nuclear extracts of equivalent protein concentration from the various primates. Coincubation of Pithecia and Aotus fibroblast extracts with Presbytis extract diminished specific 1,25(OH)2-D3 binding in the mix by 90% and 95% respectively. Similar results were obtained by mixing nuclear extracts of the owl monkey cell line, OMK, and the vitamin D resistant marmoset B-lymphoblast cell line B95-8. A wild type 1,25(OH)2-D3-binding profile was restored in mixtures after trypsin or heat treatment of the B95-8 extract. These data indicate that some New World primate cells contain a soluble protein that prevents intracellular 1,25(OH)2-D3-VDR binding. It is possible that the quantitative differences in the expression of this protein are responsible for 1,25(OH)2-D3 and other steroid hormone resistant states of variable severity in New World primates.

Full text

PDF
996

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. S., Gacad M. A., Baker A. J., Kheun G., Rude R. K. Diminished internalization and action of 1,25-dihydroxyvitamin D3 in dermal fibroblasts cultured from New World primates. Endocrinology. 1985 Jun;116(6):2523–2527. doi: 10.1210/endo-116-6-2523. [DOI] [PubMed] [Google Scholar]
  2. Adams J. S., Gacad M. A. Phenotypic diversity of the cellular 1,25-dihydroxyvitamin D3-receptor interaction among different genera of New World primates. J Clin Endocrinol Metab. 1988 Jan;66(1):224–229. doi: 10.1210/jcem-66-1-224. [DOI] [PubMed] [Google Scholar]
  3. Adams J. S., Gacad M. A., Singer F. R. Specific internalization and action of 1,25-dihydroxyvitamin D3 in cultured dermal fibroblasts from patients with X-linked hypophosphatemia. J Clin Endocrinol Metab. 1984 Sep;59(3):556–560. doi: 10.1210/jcem-59-3-556. [DOI] [PubMed] [Google Scholar]
  4. Adams J. S. Specific internalization of 1,25-dihydroxyvitamin D3 by cultured intestinal epithelial cells. J Steroid Biochem. 1984 Apr;20(4A):857–862. doi: 10.1016/0022-4731(84)90396-0. [DOI] [PubMed] [Google Scholar]
  5. Allegretto E. A., Pike J. W. Trypsin cleavage of chick 1,25-dihydroxyvitamin D3 receptors. Generation of discrete polypeptides which retain hormone but are unreactive to DNA and monoclonal antibody. J Biol Chem. 1985 Aug 25;260(18):10139–10145. [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Brown T. A., DeLuca H. F. Phosphorylation of the 1,25-dihydroxyvitamin D3 receptor. A primary event in 1,25-dihydroxyvitamin D3 action. J Biol Chem. 1990 Jun 15;265(17):10025–10029. [PubMed] [Google Scholar]
  8. Carson-Jurica M. A., Schrader W. T., O'Malley B. W. Steroid receptor family: structure and functions. Endocr Rev. 1990 May;11(2):201–220. doi: 10.1210/edrv-11-2-201. [DOI] [PubMed] [Google Scholar]
  9. Catelli M. G., Binart N., Jung-Testas I., Renoir J. M., Baulieu E. E., Feramisco J. R., Welch W. J. The common 90-kd protein component of non-transformed '8S' steroid receptors is a heat-shock protein. EMBO J. 1985 Dec 1;4(12):3131–3135. doi: 10.1002/j.1460-2075.1985.tb04055.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dame M. C., Pierce E. A., DeLuca H. F. Identification of the porcine intestinal 1,25-dihydroxyvitamin D3 receptor on sodium dodecyl sulfate/polyacrylamide gels by renaturation and immunoblotting. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7825–7829. doi: 10.1073/pnas.82.23.7825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Denis M., Wikström A. C., Gustafsson J. A. The molybdate-stabilized nonactivated glucocorticoid receptor contains a dimer of Mr 90,000 non-hormone-binding protein. J Biol Chem. 1987 Aug 25;262(24):11803–11806. [PubMed] [Google Scholar]
  12. Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Housley P. R., Sanchez E. R., Westphal H. M., Beato M., Pratt W. B. The molybdate-stabilized L-cell glucocorticoid receptor isolated by affinity chromatography or with a monoclonal antibody is associated with a 90-92-kDa nonsteroid-binding phosphoprotein. J Biol Chem. 1985 Nov 5;260(25):13810–13817. [PubMed] [Google Scholar]
  14. Joab I., Radanyi C., Renoir M., Buchou T., Catelli M. G., Binart N., Mester J., Baulieu E. E. Common non-hormone binding component in non-transformed chick oviduct receptors of four steroid hormones. 1984 Apr 26-May 2Nature. 308(5962):850–853. doi: 10.1038/308850a0. [DOI] [PubMed] [Google Scholar]
  15. Kost S. L., Smith D. F., Sullivan W. P., Welch W. J., Toft D. O. Binding of heat shock proteins to the avian progesterone receptor. Mol Cell Biol. 1989 Sep;9(9):3829–3838. doi: 10.1128/mcb.9.9.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Liberman U. A., de Grange D., Marx S. J. Low affinity of the receptor for 1 alpha,25-dihydroxyvitamin D3 in the marmoset, a New World monkey. FEBS Lett. 1985 Mar 25;182(2):385–388. doi: 10.1016/0014-5793(85)80338-0. [DOI] [PubMed] [Google Scholar]
  18. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  19. Majeska R. J., Rodan G. A. The effect of 1,25(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J Biol Chem. 1982 Apr 10;257(7):3362–3365. [PubMed] [Google Scholar]
  20. Manolagas S. C., Abare J., Deftos L. J. Glucocorticoids increase the 1,25(OH)2D3 receptor concentration in rat osteogenic sarcoma cells. Calcif Tissue Int. 1984 Mar;36(2):153–157. doi: 10.1007/BF02405311. [DOI] [PubMed] [Google Scholar]
  21. Mendel D. B., Bodwell J. E., Gametchu B., Harrison R. W., Munck A. Molybdate-stabilized nonactivated glucocorticoid-receptor complexes contain a 90-kDa non-steroid-binding phosphoprotein that is lost on activation. J Biol Chem. 1986 Mar 15;261(8):3758–3763. [PubMed] [Google Scholar]
  22. Pike J. W., Marion S. L., Donaldson C. A., Haussler M. R. Serum and monoclonal antibodies against the chick intestinal receptor for 1,25-dihydroxyvitamin D3. Generation by a preparation enriched in a 64,000-dalton protein. J Biol Chem. 1983 Jan 25;258(2):1289–1296. [PubMed] [Google Scholar]
  23. Pike J. W. Monoclonal antibodies to chick intestinal receptors for 1,25-dihydroxyvitamin D3. Interaction and effects of binding on receptor function. J Biol Chem. 1984 Jan 25;259(2):1167–1173. [PubMed] [Google Scholar]
  24. Pike J. W., Sleator N. M. Hormone-dependent phosphorylation of the 1,25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem Biophys Res Commun. 1985 Aug 30;131(1):378–385. doi: 10.1016/0006-291x(85)91813-3. [DOI] [PubMed] [Google Scholar]
  25. Redeuilh G., Moncharmont B., Secco C., Baulieu E. E. Subunit composition of the molybdate-stabilized "8-9 S" nontransformed estradiol receptor purified from calf uterus. J Biol Chem. 1987 May 25;262(15):6969–6975. [PubMed] [Google Scholar]
  26. Reinhardt T. A., Horst R. L., Orf J. W., Hollis B. W. A microassay for 1,25-dihydroxyvitamin D not requiring high performance liquid chromatography: application to clinical studies. J Clin Endocrinol Metab. 1984 Jan;58(1):91–98. doi: 10.1210/jcem-58-1-91. [DOI] [PubMed] [Google Scholar]
  27. Sanchez E. R., Toft D. O., Schlesinger M. J., Pratt W. B. Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat shock protein. J Biol Chem. 1985 Oct 15;260(23):12398–12401. [PubMed] [Google Scholar]
  28. Shinki T., Shiina Y., Takahashi N., Tanioka Y., Koizumi H., Suda T. Extremely high circulating levels of 1 alpha,25-dihydroxyvitamin D3 in the marmoset, a new world monkey. Biochem Biophys Res Commun. 1983 Jul 29;114(2):452–457. doi: 10.1016/0006-291x(83)90801-x. [DOI] [PubMed] [Google Scholar]
  29. Takahashi N., Suda S., Shinki T., Horiuchi N., Shiina Y., Tanioka Y., Koizumi H., Suda T. The mechanism of end-organ resistance to 1 alpha,25-dihydroxycholecalciferol in the common marmoset. Biochem J. 1985 Apr 15;227(2):555–563. doi: 10.1042/bj2270555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wecksler W. R., Norman A. W. Biochemical properties of 1 alpha, 25-dihydroxyvitamin D receptors. J Steroid Biochem. 1980 Aug;13(8):977–989. doi: 10.1016/0022-4731(80)90173-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES