Abstract
Despite its affinity for fibrin, tissue plasminogen activator (t-PA) administration causes systemic fibrinogenolysis. To investigate the mechanism, t-PA was incubated with plasma in the presence or absence of a fibrin clot, and the extent of fibrinogenolysis was determined by measuring B beta 1-42. In the presence of fibrin, there is a 21-fold increase in B beta 1-42 levels. The potentiation of fibrinogenolysis in the presence of fibrin is mediated by soluble fibrin degradation products because (a) the extent of t-PA induced fibrinogenolysis and clot lysis are directly related, (b) once clot lysis has been initiated, fibrinogenolysis continues even after the clot is removed, and (c) lysates of cross-linked fibrin clots potentiate t-PA-mediated fibrinogenolysis. Fibrin degradation products stimulate fibrinogenolysis by binding t-PA and plasminogen because approximately 70% of the labeled material in the clot lysates binds to both t-PA- and plasminogen-Sepharose, and only the bound fractions have potentiating activity. The binding site for t-PA and plasminogen is on the E domain because characterization of the potentiating fragments using gel filtration followed by PAGE and immunoblotting indicates that the major species is (DD)E complex, whereas minor components include high-molecular weight derivatives containing the (DD)E complex and fragment E. In contrast, D-dimer is the predominant species found in the fractions that do not bind to the adsorbants, and it has no potentiating activity. Thus, soluble products of t-PA-induced lysis of cross-linked fibrin potentiate t-PA-mediated fibrinogenolysis by providing a surface for t-PA and plasminogen binding thereby promoting plasmin generation. The occurrence of this phenomenon after therapeutic thrombolysis may explain the limited clot selectivity of t-PA.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bányai L., Patthy L. Importance of intramolecular interactions in the control of the fibrin affinity and activation of human plasminogen. J Biol Chem. 1984 May 25;259(10):6466–6471. [PubMed] [Google Scholar]
- Cederholm-Williams S. A., Fennell S. J. Binding of plasmin(ogen) to sepharose bound fibrin(ogen) alpha-chain. 1981 Feb 15-Mar 1Thromb Res. 21(4-5):503–506. doi: 10.1016/0049-3848(81)90151-1. [DOI] [PubMed] [Google Scholar]
- Christensen U. C-terminal lysine residues of fibrinogen fragments essential for binding to plasminogen. FEBS Lett. 1985 Mar 11;182(1):43–46. doi: 10.1016/0014-5793(85)81150-9. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Francis C. W., Marder V. J., Barlow G. H. Plasmic degradation of crosslinked fibrin. Characterization of new macromolecular soluble complexes and a model of their structure. J Clin Invest. 1980 Nov;66(5):1033–1043. doi: 10.1172/JCI109931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Francis C. W., Marder V. J., Martin S. E. Plasmic degradation of crosslinked fibrin. I. Structural analysis of the particulate clot and identification of new macromolecular-soluble complexes. Blood. 1980 Sep;56(3):456–464. [PubMed] [Google Scholar]
- Gaffney P. J., Brasher M. Subunit structure of the plasmin-induced degradation products of crosslinked fibrin. Biochim Biophys Acta. 1973 Jan 25;295(1):308–313. doi: 10.1016/0005-2795(73)90098-6. [DOI] [PubMed] [Google Scholar]
- Garabedian H. D., Gold H. K., Leinbach R. C., Johns J. A., Yasuda T., Kanke M., Collen D. Comparative properties of two clinical preparations of recombinant human tissue-type plasminogen activator in patients with acute myocardial infarction. J Am Coll Cardiol. 1987 Mar;9(3):599–607. doi: 10.1016/s0735-1097(87)80054-2. [DOI] [PubMed] [Google Scholar]
- Goldhaber S. Z., Vaughan D. E., Markis J. E., Selwyn A. P., Meyerovitz M. F., Loscalzo J., Kim D. S., Kessler C. M., Dawley D. L., Sharma G. V. Acute pulmonary embolism treated with tissue plasminogen activator. Lancet. 1986 Oct 18;2(8512):886–889. doi: 10.1016/s0140-6736(86)90411-3. [DOI] [PubMed] [Google Scholar]
- Hoylaerts M., Rijken D. C., Lijnen H. R., Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982 Mar 25;257(6):2912–2919. [PubMed] [Google Scholar]
- Hudry-Clergeon G., Paturel L., Suscillon M. Identification d'un complexe (D-D)...E dans les produits de dégradation de la fibrine bovine stabilisée par le facteur XIII. Pathol Biol (Paris) 1974 Nov;22 Suppl:47–52. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Levine M., Hirsh J., Weitz J., Cruickshank M., Neemeh J., Turpie A. G., Gent M. A randomized trial of a single bolus dosage regimen of recombinant tissue plasminogen activator in patients with acute pulmonary embolism. Chest. 1990 Dec;98(6):1473–1479. doi: 10.1378/chest.98.6.1473. [DOI] [PubMed] [Google Scholar]
- Loscalzo J. Structural and kinetic comparison of recombinant human single- and two-chain tissue plasminogen activator. J Clin Invest. 1988 Oct;82(4):1391–1397. doi: 10.1172/JCI113743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas M. A., Fretto L. J., McKee P. A. The binding of human plasminogen to fibrin and fibrinogen. J Biol Chem. 1983 Apr 10;258(7):4249–4256. [PubMed] [Google Scholar]
- MCFARLANE A. S. Labelling of plasma proteins with radioactive iodine. Biochem J. 1956 Jan;62(1):135–143. doi: 10.1042/bj0620135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacGregor I. R., Micklem L. R., James K., Pepper D. S. Characterisation of epitopes on human tissue plasminogen activator recognised by a group of monoclonal antibodies. Thromb Haemost. 1985 Feb 18;53(1):45–50. [PubMed] [Google Scholar]
- Nieuwenhuizen W., Verheijen J. H., Vermond A., Chang G. T. Plasminogen activation by tissue activator is accelerated in the presence of fibrin(ogen) cyanogen bromide fragment FCB-2. Biochim Biophys Acta. 1983 Feb 22;755(3):531–533. doi: 10.1016/0304-4165(83)90261-1. [DOI] [PubMed] [Google Scholar]
- Nieuwenhuizen W., Vermond A., Voskuilen M., Traas D. W., Verheijen J. H. Identification of a site in fibrin(ogen) which is involved in the acceleration of plasminogen activation by tissue-type plasminogen activator. Biochim Biophys Acta. 1983 Oct 17;748(1):86–92. doi: 10.1016/0167-4838(83)90030-4. [DOI] [PubMed] [Google Scholar]
- Noe D. A., Bell W. R. A kinetic analysis of fibrinogenolysis during plasminogen activator therapy. Clin Pharmacol Ther. 1987 Mar;41(3):297–303. doi: 10.1038/clpt.1987.31. [DOI] [PubMed] [Google Scholar]
- Olexa S. A., Budzynski A. Z. Binding phenomena of isolated unique plasmic degradation products of human cross-linked fibrin. J Biol Chem. 1979 Jun 10;254(11):4925–4932. [PubMed] [Google Scholar]
- Olexa S. A., Budzynski A. Z., Doolittle R. F., Cottrell B. A., Greene T. C. Structure of fragment E species from human cross-linked fibrin. Biochemistry. 1981 Oct 13;20(21):6139–6145. doi: 10.1021/bi00524a035. [DOI] [PubMed] [Google Scholar]
- Olexa S. A., Budzynski A. Z. Primary soluble plasmic degradation product of human cross-linked fibrin. Isolation and stoichiometry of the (DD)E complex. Biochemistry. 1979 Mar 20;18(6):991–995. doi: 10.1021/bi00573a009. [DOI] [PubMed] [Google Scholar]
- Owen J., Friedman K. D., Grossman B. A., Wilkins C., Berke A. D., Powers E. R. Quantitation of fragment X formation during thrombolytic therapy with streptokinase and tissue plasminogen activator. J Clin Invest. 1987 Jun;79(6):1642–1647. doi: 10.1172/JCI113001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennica D., Holmes W. E., Kohr W. J., Harkins R. N., Vehar G. A., Ward C. A., Bennett W. F., Yelverton E., Seeburg P. H., Heyneker H. L. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature. 1983 Jan 20;301(5897):214–221. doi: 10.1038/301214a0. [DOI] [PubMed] [Google Scholar]
- Pizzo S. V., Taylor L. M., Jr, Schwartz M. L., Hill R. L., McKee P. A. Subunit structure of fragment D from fibrinogen and cross-linked fibrin. J Biol Chem. 1973 Jul 10;248(13):4584–4590. [PubMed] [Google Scholar]
- Rao A. K., Pratt C., Berke A., Jaffe A., Ockene I., Schreiber T. L., Bell W. R., Knatterud G., Robertson T. L., Terrin M. L. Thrombolysis in Myocardial Infarction (TIMI) Trial--phase I: hemorrhagic manifestations and changes in plasma fibrinogen and the fibrinolytic system in patients treated with recombinant tissue plasminogen activator and streptokinase. J Am Coll Cardiol. 1988 Jan;11(1):1–11. doi: 10.1016/0735-1097(88)90158-1. [DOI] [PubMed] [Google Scholar]
- Rijken D. C., Hoylaerts M., Collen D. Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator. J Biol Chem. 1982 Mar 25;257(6):2920–2925. [PubMed] [Google Scholar]
- Rákóczi I., Wiman B., Collen D. On the biological significance of the specific interaction between fibrin, plasminogen and antiplasmin. Biochim Biophys Acta. 1978 May 3;540(2):295–300. doi: 10.1016/0304-4165(78)90142-3. [DOI] [PubMed] [Google Scholar]
- Rånby M. Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta. 1982 Jun 24;704(3):461–469. doi: 10.1016/0167-4838(82)90068-1. [DOI] [PubMed] [Google Scholar]
- Sobel B. E., Gross R. W., Robison A. K. Thrombolysis, clot selectivity, and kinetics. Circulation. 1984 Aug;70(2):160–164. doi: 10.1161/01.cir.70.2.160. [DOI] [PubMed] [Google Scholar]
- Topol E. J., Bell W. R., Weisfeldt M. L. Coronary thrombolysis with recombinant tissue-type plasminogen activator. A hematologic and pharmacologic study. Ann Intern Med. 1985 Dec;103(6 ):837–843. doi: 10.7326/0003-4819-103-6-837. [DOI] [PubMed] [Google Scholar]
- Van de Werf F., Ludbrook P. A., Bergmann S. R., Tiefenbrunn A. J., Fox K. A., de Geest H., Verstraete M., Collen D., Sobel B. E. Coronary thrombolysis with tissue-type plasminogen activator in patients with evolving myocardial infarction. N Engl J Med. 1984 Mar 8;310(10):609–613. doi: 10.1056/NEJM198403083101001. [DOI] [PubMed] [Google Scholar]
- Verheijen J. H., Nieuwenhuizen W., Traas D. W., Chang G. T., Hoegee E. Differences in effects of fibrin(ogen) fragments on the activation of 1-glu-plasminogen and 442-val-plasminogen by tissue-type plasminogen activator. Thromb Res. 1983 Oct 1;32(1):87–92. doi: 10.1016/0049-3848(83)90157-3. [DOI] [PubMed] [Google Scholar]
- Verheijen J. H., Nieuwenhuizen W., Wijngaards G. Activation of plasminogen by tissue activator is increased specifically in the presence of certain soluble fibrin(ogen) fragments. Thromb Res. 1982 Aug 15;27(4):377–385. doi: 10.1016/0049-3848(82)90055-x. [DOI] [PubMed] [Google Scholar]
- Verstraete M., Bernard R., Bory M., Brower R. W., Collen D., de Bono D. P., Erbel R., Huhmann W., Lennane R. J., Lubsen J. Randomised trial of intravenous recombinant tissue-type plasminogen activator versus intravenous streptokinase in acute myocardial infarction. Report from the European Cooperative Study Group for Recombinant Tissue-type Plasminogen Activator. Lancet. 1985 Apr 13;1(8433):842–847. doi: 10.1016/s0140-6736(85)92208-1. [DOI] [PubMed] [Google Scholar]
- Verstraete M., Miller G. A., Bounameaux H., Charbonnier B., Colle J. P., Lecorf G., Marbet G. A., Mombaerts P., Olsson C. G. Intravenous and intrapulmonary recombinant tissue-type plasminogen activator in the treatment of acute massive pulmonary embolism. Circulation. 1988 Feb;77(2):353–360. doi: 10.1161/01.cir.77.2.353. [DOI] [PubMed] [Google Scholar]
- Voskuilen M., Vermond A., Veeneman G. H., van Boom J. H., Klasen E. A., Zegers N. D., Nieuwenhuizen W. Fibrinogen lysine residue A alpha 157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J Biol Chem. 1987 May 5;262(13):5944–5946. [PubMed] [Google Scholar]
- Váradi A., Patthy L. Beta(Leu121-Lys122) segment of fibrinogen is in a region essential for plasminogen binding by fibrin fragment E. Biochemistry. 1984 Apr 24;23(9):2108–2112. doi: 10.1021/bi00304a036. [DOI] [PubMed] [Google Scholar]
- Váradi A., Patthy L. Location of plasminogen-binding sites in human fibrin(ogen). Biochemistry. 1983 May 10;22(10):2440–2446. doi: 10.1021/bi00279a021. [DOI] [PubMed] [Google Scholar]
- Weitz J. I., Koehn J. A., Canfield R. E., Landman S. L., Friedman R. Development of a radioimmunoassay for the fibrinogen-derived peptide B beta 1-42. Blood. 1986 Apr;67(4):1014–1022. [PubMed] [Google Scholar]
- Wiman B., Collen D. Molecular mechanism of physiological fibrinolysis. Nature. 1978 Apr 6;272(5653):549–550. doi: 10.1038/272549a0. [DOI] [PubMed] [Google Scholar]