Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Sep;90(3):749–758. doi: 10.1172/JCI115947

On the mechanism of parathyroid hormone stimulation of calcium uptake by mouse distal convoluted tubule cells.

F A Gesek 1, P A Friedman 1
PMCID: PMC329926  PMID: 1522230

Abstract

PTH stimulates transcellular Ca2+ absorption in renal distal convoluted tubules. The effect of PTH on membrane voltage, the ionic basis of the change in voltage, and the relations between voltage and calcium entry were determined on immortalized mouse distal convoluted tubule cells. PTH (10(-8) M) significantly increased 45Ca2+ uptake from basal levels of 2.81 +/- 0.16 to 3.88 +/- 0.19 nmol min-1 mg protein-1. PTH-induced 45Ca2+ uptake was abolished by the dihydropyridine antagonist, nifedipine (10(-5) M). PTH did not affect 22Na+ uptake. Intracellular calcium activity ([Ca2+]i) was measured in cells loaded with fura-2. Control [Ca2+]i averaged 112 +/- 21 nM. PTH increased [Ca2+]i over the range of 10(-11) to 10(-7) M. Maximal stimulation to 326 +/- 31 nM was achieved at 10(-8) M PTH. Resting membrane voltage measured with the potential sensitive dye DiO6(3) averaged -71 +/- 2 mV. PTH hyperpolarized cells by 19 +/- 4 mV. The chloride-channel blocker NPPB prevented PTH-induced hyperpolarization. PTH decreased and NPPB increased intracellular chloride, measured with the fluorescent dye SPQ. Chloride permeability was estimated by measuring the rate of 125I- efflux. PTH increased 125I- efflux and this effect was blocked by NPPB. Clamping voltage with K+/valinomycin; depolarizing membrane voltage by reducing extracellular chloride; or addition of NPPB prevented PTH-induced calcium uptake. In conclusion, PTH increases chloride conductance in distal convoluted tubule cells leading to decreased intracellular chloride activity, membrane hyperpolarization, and increased calcium entry through dihydropyridine-sensitive calcium channels.

Full text

PDF
749

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. P., Welsh M. J. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6003–6007. doi: 10.1073/pnas.88.14.6003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bacskai B. J., Friedman P. A. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature. 1990 Sep 27;347(6291):388–391. doi: 10.1038/347388a0. [DOI] [PubMed] [Google Scholar]
  3. Beck F. X., Dörge A., Rick R., Schramm M., Thurau K. Effect of potassium adaptation on the distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells. Pflugers Arch. 1987 Aug;409(4-5):477–485. doi: 10.1007/BF00583804. [DOI] [PubMed] [Google Scholar]
  4. Bindels R. J., Hartog A., Timmermans J., Van Os C. H. Active Ca2+ transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am J Physiol. 1991 Nov;261(5 Pt 2):F799–F807. doi: 10.1152/ajprenal.1991.261.5.F799. [DOI] [PubMed] [Google Scholar]
  5. Bourdeau J. E., Burg M. B. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle's loop. Am J Physiol. 1980 Aug;239(2):F121–F126. doi: 10.1152/ajprenal.1980.239.2.F121. [DOI] [PubMed] [Google Scholar]
  6. Bourdeau J. E., Lau K. Effects of parathyroid hormone on cytosolic free calcium concentration in individual rabbit connecting tubules. J Clin Invest. 1989 Feb;83(2):373–379. doi: 10.1172/JCI113894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chabardès D., Gagnan-Brunette M., Imbert-Teboul M., Gontcharevskaia O., Montégut M., Clique A., Morel F. Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J Clin Invest. 1980 Feb;65(2):439–448. doi: 10.1172/JCI109687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheng S. H., Rich D. P., Marshall J., Gregory R. J., Welsh M. J., Smith A. E. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell. 1991 Sep 6;66(5):1027–1036. doi: 10.1016/0092-8674(91)90446-6. [DOI] [PubMed] [Google Scholar]
  9. Chesnoy-Marchais D., Fritsch J. Chloride current activated by cyclic AMP and parathyroid hormone in rat osteoblasts. Pflugers Arch. 1989 Oct;415(1):104–114. doi: 10.1007/BF00373147. [DOI] [PubMed] [Google Scholar]
  10. Clancy J. P., McCann J. D., Li M., Welsh M. J. Calcium-dependent regulation of airway epithelial chloride channels. Am J Physiol. 1990 Feb;258(2 Pt 1):L25–L32. doi: 10.1152/ajplung.1990.258.2.L25. [DOI] [PubMed] [Google Scholar]
  11. Costanzo L. S., Windhager E. E. Effects of PTH, ADH, and cyclic AMP on distal tubular Ca and Na reabsorption. Am J Physiol. 1980 Nov;239(5):F478–F485. doi: 10.1152/ajprenal.1980.239.5.F478. [DOI] [PubMed] [Google Scholar]
  12. Di Virgilio F., Lew P. D., Andersson T., Pozzan T. Plasma membrane potential modulates chemotactic peptide-stimulated cytosolic free Ca2+ changes in human neutrophils. J Biol Chem. 1987 Apr 5;262(10):4574–4579. [PubMed] [Google Scholar]
  13. Friedman P. A. Basal and hormone-activated calcium absorption in mouse renal thick ascending limbs. Am J Physiol. 1988 Jan;254(1 Pt 2):F62–F70. doi: 10.1152/ajprenal.1988.254.1.F62. [DOI] [PubMed] [Google Scholar]
  14. Gesek F. A., Friedman P. A. Mechanism of calcium transport stimulated by chlorothiazide in mouse distal convoluted tubule cells. J Clin Invest. 1992 Aug;90(2):429–438. doi: 10.1172/JCI115878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greger R., Lang F., Oberleithner H. Distal site of calcium reabsorption in the rat nephron. Pflugers Arch. 1978 May 18;374(2):153–157. doi: 10.1007/BF00581296. [DOI] [PubMed] [Google Scholar]
  16. Harris C. A., Burnatowska M. A., Seely J. F., Sutton R. A., Quamme G. A., Dirks J. H. Effects of parathyroid hormone on electrolyte transport in the hamster nephron. Am J Physiol. 1979 Apr;236(4):F342–F348. doi: 10.1152/ajprenal.1979.236.4.F342. [DOI] [PubMed] [Google Scholar]
  17. Imai M. Effects of parathyroid hormone and N6,O2'-dibutyryl cyclic AMP on Ca2+ transport across the rabbit distal nephron segments perfused in vitro. Pflugers Arch. 1981 May;390(2):145–151. doi: 10.1007/BF00590197. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lafond J., Leclerc M., Brunette M. G. Characterization of calcium transport by basal plasma membranes from human placental syncytiotrophoblast. J Cell Physiol. 1991 Jul;148(1):17–23. doi: 10.1002/jcp.1041480103. [DOI] [PubMed] [Google Scholar]
  20. Lückhoff A., Clapham D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature. 1992 Jan 23;355(6358):356–358. doi: 10.1038/355356a0. [DOI] [PubMed] [Google Scholar]
  21. Malnic G., Klose R. M., Giebisch G. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Physiol. 1966 Sep;211(3):548–559. doi: 10.1152/ajplegacy.1966.211.3.548. [DOI] [PubMed] [Google Scholar]
  22. Matthews G., Neher E., Penner R. Chloride conductance activated by external agonists and internal messengers in rat peritoneal mast cells. J Physiol. 1989 Nov;418:131–144. doi: 10.1113/jphysiol.1989.sp017831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matthews G., Neher E., Penner R. Second messenger-activated calcium influx in rat peritoneal mast cells. J Physiol. 1989 Nov;418:105–130. doi: 10.1113/jphysiol.1989.sp017830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oettgen H. C., Terhorst C., Cantley L. C., Rosoff P. M. Stimulation of the T3-T cell receptor complex induces a membrane-potential-sensitive calcium influx. Cell. 1985 Mar;40(3):583–590. doi: 10.1016/0092-8674(85)90206-5. [DOI] [PubMed] [Google Scholar]
  25. Pizzonia J. H., Gesek F. A., Kennedy S. M., Coutermarsh B. A., Bacskai B. J., Friedman P. A. Immunomagnetic separation, primary culture, and characterization of cortical thick ascending limb plus distal convoluted tubule cells from mouse kidney. In Vitro Cell Dev Biol. 1991 May;27A(5):409–416. doi: 10.1007/BF02630961. [DOI] [PubMed] [Google Scholar]
  26. Rogers K. V., Goldman P. S., Frizzell R. A., McKnight G. S. Regulation of Cl- transport in T84 cell clones expressing a mutant regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8975–8979. doi: 10.1073/pnas.87.22.8975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sarkadi B., Tordai A., Gárdos G. Membrane depolarization selectively inhibits receptor-operated calcium channels in human T (Jurkat) lymphoblasts. Biochim Biophys Acta. 1990 Aug 24;1027(2):130–140. doi: 10.1016/0005-2736(90)90076-z. [DOI] [PubMed] [Google Scholar]
  28. Savage A. L., Biffen M., Martin B. R. Vasopressin-stimulated Ca2+ influx in rat hepatocytes is inhibited in high-K+ medium. Biochem J. 1989 Jun 15;260(3):821–827. doi: 10.1042/bj2600821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schwiebert E. M., Karlson K. H., Friedman P. A., Dietl P., Spielman W. S., Stanton B. A. Adenosine regulates a chloride channel via protein kinase C and a G protein in a rabbit cortical collecting duct cell line. J Clin Invest. 1992 Mar;89(3):834–841. doi: 10.1172/JCI115662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shareghi G. R., Stoner L. C. Calcium transport across segments of the rabbit distal nephron in vitro. Am J Physiol. 1978 Oct;235(4):F367–F375. doi: 10.1152/ajprenal.1978.235.4.F367. [DOI] [PubMed] [Google Scholar]
  31. Shimizu T., Nakamura M., Yoshitomi K., Imai M. Interaction of trichlormethiazide or amiloride with PTH in stimulating Ca2+ absorption in rabbit CNT. Am J Physiol. 1991 Jul;261(1 Pt 2):F36–F43. doi: 10.1152/ajprenal.1991.261.1.F36. [DOI] [PubMed] [Google Scholar]
  32. Shimizu T., Yoshitomi K., Nakamura M., Imai M. Effect of parathyroid hormone on the connecting tubule from the rabbit kidney: biphasic response of transmural voltage. Pflugers Arch. 1990 May;416(3):254–261. doi: 10.1007/BF00392061. [DOI] [PubMed] [Google Scholar]
  33. Shimizu T., Yoshitomi K., Nakamura M., Imai M. Effects of PTH, calcitonin, and cAMP on calcium transport in rabbit distal nephron segments. Am J Physiol. 1990 Sep;259(3 Pt 2):F408–F414. doi: 10.1152/ajprenal.1990.259.3.F408. [DOI] [PubMed] [Google Scholar]
  34. Shimizu T., Yoshitomi K., Nakamura M., Imai M. Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro. J Clin Invest. 1988 Aug;82(2):721–730. doi: 10.1172/JCI113653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Suki W. N., Rouse D., Ng R. C., Kokko J. P. Calcium transport in the thick ascending limb of Henle. Heterogeneity of function in the medullary and cortical segments. J Clin Invest. 1980 Nov;66(5):1004–1009. doi: 10.1172/JCI109928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sutton R. A., Wong N. L., Dirks J. H. Effects of parathyroid hormone on sodium and calcium transport in the dog nephron. Clin Sci Mol Med. 1976 Oct;51(4):345–351. doi: 10.1042/cs0510345. [DOI] [PubMed] [Google Scholar]
  37. Suzuki M., Morita T., Hanaoka K., Kawaguchi Y., Sakai O. A Cl- channel activated by parathyroid hormone in rabbit renal proximal tubule cells. J Clin Invest. 1991 Sep;88(3):735–742. doi: 10.1172/JCI115370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tabcharani J. A., Chang X. B., Riordan J. R., Hanrahan J. W. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature. 1991 Aug 15;352(6336):628–631. doi: 10.1038/352628a0. [DOI] [PubMed] [Google Scholar]
  39. Tsien R. W., Ellinor P. T., Horne W. A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci. 1991 Sep;12(9):349–354. doi: 10.1016/0165-6147(91)90595-j. [DOI] [PubMed] [Google Scholar]
  40. Verkman A. S. Development and biological applications of chloride-sensitive fluorescent indicators. Am J Physiol. 1990 Sep;259(3 Pt 1):C375–C388. doi: 10.1152/ajpcell.1990.259.3.C375. [DOI] [PubMed] [Google Scholar]
  41. Wittner M., Di Stefano A. Effects of antidiuretic hormone, parathyroid hormone and glucagon on transepithelial voltage and resistance of the cortical and medullary thick ascending limb of Henle's loop of the mouse nephron. Pflugers Arch. 1990 Mar;415(6):707–712. doi: 10.1007/BF02584009. [DOI] [PubMed] [Google Scholar]
  42. Wittner M., Di Stefano A., Wangemann P., Greger R. How do loop diuretics act? Drugs. 1991;41 (Suppl 3):1–13. doi: 10.2165/00003495-199100413-00003. [DOI] [PubMed] [Google Scholar]
  43. Yoshitomi K., Shimizu T., Taniguchi J., Imai M. Electrophysiological characterization of rabbit distal convoluted tubule cell. Pflugers Arch. 1989 Aug;414(4):457–463. doi: 10.1007/BF00585057. [DOI] [PubMed] [Google Scholar]
  44. Zeidel M. L., Kikeri D., Silva P., Burrowes M., Brenner B. M. Atrial natriuretic peptides inhibit conductive sodium uptake by rabbit inner medullary collecting duct cells. J Clin Invest. 1988 Sep;82(3):1067–1074. doi: 10.1172/JCI113663. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES