Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Sep;90(3):927–935. doi: 10.1172/JCI115969

Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure.

T Takahashi 1, P D Allen 1, R V Lacro 1, A R Marks 1, A R Dennis 1, F J Schoen 1, W Grossman 1, J D Marsh 1, S Izumo 1
PMCID: PMC329948  PMID: 1326001

Abstract

Cytoplasmic free calcium ions (Ca2+) play a central role in excitation-contraction coupling of cardiac muscle. Abnormal Ca2+ handling has been implicated in systolic and diastolic dysfunction in patients with end-stage heart failure. The current study tests the hypothesis that expression of genes encoding proteins regulating myocardial Ca2+ homeostasis is altered in human heart failure. We analyzed RNA isolated from the left ventricular (LV) myocardium of 30 cardiac transplant recipients with end-stage heart failure (HF) and five organ donors (normal control), using cDNA probes specific for the cardiac dihydropyridine (DHP) receptor (the alpha 1 subunit of the DHP-sensitive Ca2+ channel) and cardiac calsequestrin of sarcoplasmic reticulum (SR). In addition, abundance of DHP binding sites was assessed by ligand binding techniques (n = 6 each for the patients and normal controls). There was no difference in the level of cardiac calsequestrin mRNA between the HF patients and normal controls. In contrast, the level of mRNA encoding the DHP receptor was decreased by 47% (P less than 0.001) in the LV myocardium from the patients with HF compared to the normal controls. The number of DHP binding sites was decreased by 35-48%. As reported previously, expression of the SR Ca(2+)-ATPase mRNA was also diminished by 50% (P less than 0.001) in the HF group. These data suggest that expression of the genes encoding the cardiac DHP receptor and SR Ca(2+)-ATPase is reduced in the LV myocardium from patients with HF. Altered expression of these genes may be related to abnormal Ca2+ handling in the failing myocardium, contributing to LV systolic and diastolic dysfunction in patients with end-stage heart failure.

Full text

PDF
927

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostoni P. G., De Cesare N., Doria E., Polese A., Tamborini G., Guazzi M. D. Afterload reduction: a comparison of captopril and nifedipine in dilated cardiomyopathy. Br Heart J. 1986 Apr;55(4):391–399. doi: 10.1136/hrt.55.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  3. Bean B. P. Classes of calcium channels in vertebrate cells. Annu Rev Physiol. 1989;51:367–384. doi: 10.1146/annurev.ph.51.030189.002055. [DOI] [PubMed] [Google Scholar]
  4. Biel M., Hullin R., Freundner S., Singer D., Dascal N., Flockerzi V., Hofmann F. Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels. Eur J Biochem. 1991 Aug 15;200(1):81–88. doi: 10.1111/j.1432-1033.1991.tb21051.x. [DOI] [PubMed] [Google Scholar]
  5. Brillantes A. M., Allen P., Takahashi T., Izumo S., Marks A. R. Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res. 1992 Jul;71(1):18–26. doi: 10.1161/01.res.71.1.18. [DOI] [PubMed] [Google Scholar]
  6. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  7. Calcium antagonist caution. Lancet. 1991 Apr 13;337(8746):885–886. [PubMed] [Google Scholar]
  8. Callens-el Amrani F., Mayoux E., Mouas C., Clapier-Ventura R., Henzel D., Charlemagne D., Swynghedauw B. Normal responsiveness to external Ca and to Ca-channel modifying agents in hypertrophied rat heart. Am J Physiol. 1990 Jun;258(6 Pt 2):H1727–H1734. doi: 10.1152/ajpheart.1990.258.6.H1727. [DOI] [PubMed] [Google Scholar]
  9. Denniss A. R., Colucci W. S., Allen P. D., Marsh J. D. Distribution and function of human ventricular beta adrenergic receptors in congestive heart failure. J Mol Cell Cardiol. 1989 Jul;21(7):651–660. doi: 10.1016/0022-2828(89)90606-8. [DOI] [PubMed] [Google Scholar]
  10. Dhalla N. S., Das P. K., Sharma G. P. Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol. 1978 Apr;10(4):363–385. doi: 10.1016/0022-2828(78)90384-x. [DOI] [PubMed] [Google Scholar]
  11. Dixon I. M., Lee S. L., Dhalla N. S. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res. 1990 Mar;66(3):782–788. doi: 10.1161/01.res.66.3.782. [DOI] [PubMed] [Google Scholar]
  12. Dunselman P. H., van der Mark T. W., Kuntze C. E., van Bruggen A., Hamer J. P., Scaf A. H., Wesseling H., Lie K. I. Different results in cardiopulmonary exercise tests after long-term treatment with felodipine and enalapril in patients with congestive heart failure due to ischaemic heart disease. Eur Heart J. 1990 Mar;11(3):200–206. doi: 10.1093/oxfordjournals.eurheartj.a059684. [DOI] [PubMed] [Google Scholar]
  13. Elkayam U., Amin J., Mehra A., Vasquez J., Weber L., Rahimtoola S. H. A prospective, randomized, double-blind, crossover study to compare the efficacy and safety of chronic nifedipine therapy with that of isosorbide dinitrate and their combination in the treatment of chronic congestive heart failure. Circulation. 1990 Dec;82(6):1954–1961. doi: 10.1161/01.cir.82.6.1954. [DOI] [PubMed] [Google Scholar]
  14. Feldman A. M., Ray P. E., Silan C. M., Mercer J. A., Minobe W., Bristow M. R. Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation. 1991 Jun;83(6):1866–1872. doi: 10.1161/01.cir.83.6.1866. [DOI] [PubMed] [Google Scholar]
  15. Ferry D. R., Kaumann A. J. Relationship between beta-adrenoceptors and calcium channels in human ventricular myocardium. Br J Pharmacol. 1987 Mar;90(3):447–457. doi: 10.1111/j.1476-5381.1987.tb11194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Finkel M. S., Marks E. S., Patterson R. E., Speir E. H., Steadman K., Keiser H. R. Increased cardiac calcium channels in hamster cardiomyopathy. Am J Cardiol. 1986 May 1;57(13):1205–1206. doi: 10.1016/0002-9149(86)90706-x. [DOI] [PubMed] [Google Scholar]
  17. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goldstein R. E., Boccuzzi S. J., Cruess D., Nattel S. Diltiazem increases late-onset congestive heart failure in postinfarction patients with early reduction in ejection fraction. The Adverse Experience Committee; and the Multicenter Diltiazem Postinfarction Research Group. Circulation. 1991 Jan;83(1):52–60. doi: 10.1161/01.cir.83.1.52. [DOI] [PubMed] [Google Scholar]
  19. Gwathmey J. K., Copelas L., MacKinnon R., Schoen F. J., Feldman M. D., Grossman W., Morgan J. P. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987 Jul;61(1):70–76. doi: 10.1161/01.res.61.1.70. [DOI] [PubMed] [Google Scholar]
  20. Ito Y., Suko J., Chidsey C. A. Intracellular calcium and myocardial contractility. V. Calcium uptake of sarcoplasmic reticulum fractions in hypertrophied and failing rabbit hearts. J Mol Cell Cardiol. 1974 Jun;6(3):237–247. doi: 10.1016/0022-2828(74)90053-4. [DOI] [PubMed] [Google Scholar]
  21. Izumo S., Lompré A. M., Matsuoka R., Koren G., Schwartz K., Nadal-Ginard B., Mahdavi V. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest. 1987 Mar;79(3):970–977. doi: 10.1172/JCI112908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jezek V., Jezková J., Michaljanic A., Niederle P., Feuereisl R. Long-term effect of isosorbide dinitrate and nifedipine, singly and in association, in patients with chronic heart failure. Eur Heart J. 1990 Dec;11(12):1059–1064. [PubMed] [Google Scholar]
  23. Katz A. M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med. 1990 Jan 11;322(2):100–110. doi: 10.1056/NEJM199001113220206. [DOI] [PubMed] [Google Scholar]
  24. Komuro I., Kurabayashi M., Shibazaki Y., Takaku F., Yazaki Y. Molecular cloning and characterization of a Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. Regulation of its expression by pressure overload and developmental stage. J Clin Invest. 1989 Apr;83(4):1102–1108. doi: 10.1172/JCI113989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kubo S. H., Olivari M. T., Cohn J. N. Calcium antagonists in heart failure. Ann N Y Acad Sci. 1988;522:553–564. doi: 10.1111/j.1749-6632.1988.tb33398.x. [DOI] [PubMed] [Google Scholar]
  26. Lamers J. M., Stinis J. T. Defective calcium pump in the sarcoplasmic reticulum of the hypertrophied rabbit heart. Life Sci. 1979 Jun 18;24(25):2313–2319. doi: 10.1016/0024-3205(79)90529-0. [DOI] [PubMed] [Google Scholar]
  27. Limas C. J., Olivari M. T., Goldenberg I. F., Levine T. B., Benditt D. G., Simon A. Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res. 1987 Aug;21(8):601–605. doi: 10.1093/cvr/21.8.601. [DOI] [PubMed] [Google Scholar]
  28. Lompré A. M., Lambert F., Lakatta E. G., Schwartz K. Expression of sarcoplasmic reticulum Ca(2+)-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res. 1991 Nov;69(5):1380–1388. doi: 10.1161/01.res.69.5.1380. [DOI] [PubMed] [Google Scholar]
  29. MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
  30. Marsh J. D. Coregulation of calcium channels and beta-adrenergic receptors in cultured chick embryo ventricular cells. J Clin Invest. 1989 Sep;84(3):817–823. doi: 10.1172/JCI114241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Marsh J. D., Smith T. W. Calcium channels and cardiomyopathy. J Mol Cell Cardiol. 1991 Feb;23(2):105–109. doi: 10.1016/0022-2828(91)90096-5. [DOI] [PubMed] [Google Scholar]
  32. Mayoux E., Callens F., Swynghedauw B., Charlemagne D. Adaptational process of the cardiac Ca2+ channels to pressure overload: biochemical and physiological properties of the dihydropyridine receptors in normal and hypertrophied rat hearts. J Cardiovasc Pharmacol. 1988 Oct;12(4):390–396. doi: 10.1097/00005344-198810000-00003. [DOI] [PubMed] [Google Scholar]
  33. Mercadier J. J., Lompré A. M., Duc P., Boheler K. R., Fraysse J. B., Wisnewsky C., Allen P. D., Komajda M., Schwartz K. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest. 1990 Jan;85(1):305–309. doi: 10.1172/JCI114429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mikami A., Imoto K., Tanabe T., Niidome T., Mori Y., Takeshima H., Narumiya S., Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. 1989 Jul 20;340(6230):230–233. doi: 10.1038/340230a0. [DOI] [PubMed] [Google Scholar]
  35. Movsesian M. A., Bristow M. R., Krall J. Ca2+ uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy. Circ Res. 1989 Oct;65(4):1141–1144. doi: 10.1161/01.res.65.4.1141. [DOI] [PubMed] [Google Scholar]
  36. Movsesian M. A., Colyer J., Wang J. H., Krall J. Phospholamban-mediated stimulation of Ca2+ uptake in sarcoplasmic reticulum from normal and failing hearts. J Clin Invest. 1990 May;85(5):1698–1702. doi: 10.1172/JCI114623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Movsesian M. A., Leveille C., Krall J., Colyer J., Wang J. H., Campbell K. P. Identification and characterization of proteins in sarcoplasmic reticulum from normal and failing human left ventricles. J Mol Cell Cardiol. 1990 Dec;22(12):1477–1485. doi: 10.1016/0022-2828(90)90990-j. [DOI] [PubMed] [Google Scholar]
  38. Nagai R., Zarain-Herzberg A., Brandl C. J., Fujii J., Tada M., MacLennan D. H., Alpert N. R., Periasamy M. Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2966–2970. doi: 10.1073/pnas.86.8.2966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rasmussen R. P., Minobe W., Bristow M. R. Calcium antagonist binding sites in failing and nonfailing human ventricular myocardium. Biochem Pharmacol. 1990 Feb 15;39(4):691–696. doi: 10.1016/0006-2952(90)90147-d. [DOI] [PubMed] [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Scott B. T., Simmerman H. K., Collins J. H., Nadal-Ginard B., Jones L. R. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem. 1988 Jun 25;263(18):8958–8964. [PubMed] [Google Scholar]
  42. Sen L. Y., O'Neill M., Marsh J. D., Smith T. W. Inotropic and calcium kinetic effects of calcium channel agonist and antagonist in isolated cardiac myocytes from cardiomyopathic hamsters. Circ Res. 1990 Sep;67(3):599–608. doi: 10.1161/01.res.67.3.599. [DOI] [PubMed] [Google Scholar]
  43. Staley N. A., Noren G. R., Einzig S. Early alterations in the function of sarcoplasmic reticulum in a naturally occurring model of congestive cardiomyopathy. Cardiovasc Res. 1981 May;15(5):276–281. doi: 10.1093/cvr/15.5.276. [DOI] [PubMed] [Google Scholar]
  44. Staley N. A., Noren G. R., Einzig S., Rublein T. G. Effect of early propranolol treatment in an animal model of congestive cardiomyopathy: I Mortality and Ca2+ transport in sarcoplasmic reticulum. Cardiovasc Res. 1984 Jun;18(6):371–376. doi: 10.1093/cvr/18.6.371. [DOI] [PubMed] [Google Scholar]
  45. Takahashi T., Allen P. D., Izumo S. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Correlation with expression of the Ca(2+)-ATPase gene. Circ Res. 1992 Jul;71(1):9–17. doi: 10.1161/01.res.71.1.9. [DOI] [PubMed] [Google Scholar]
  46. Tan L. B., Murray R. G., Littler W. A. Felodipine in patients with chronic heart failure: discrepant haemodynamic and clinical effects. Br Heart J. 1987 Aug;58(2):122–128. doi: 10.1136/hrt.58.2.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tanabe T., Takeshima H., Mikami A., Flockerzi V., Takahashi H., Kangawa K., Kojima M., Matsuo H., Hirose T., Numa S. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 1987 Jul 23;328(6128):313–318. doi: 10.1038/328313a0. [DOI] [PubMed] [Google Scholar]
  48. Wagner J. A., Sax F. L., Weisman H. F., Porterfield J., McIntosh C., Weisfeldt M. L., Snyder S. H., Epstein S. E. Calcium-antagonist receptors in the atrial tissue of patients with hypertrophic cardiomyopathy. N Engl J Med. 1989 Mar 23;320(12):755–761. doi: 10.1056/NEJM198903233201202. [DOI] [PubMed] [Google Scholar]
  49. Wagner J. A., Weisman H. F., Snowman A. M., Reynolds I. J., Weisfeldt M. L., Snyder S. H. Alterations in calcium antagonist receptors and sodium-calcium exchange in cardiomyopathic hamster tissues. Circ Res. 1989 Jul;65(1):205–214. doi: 10.1161/01.res.65.1.205. [DOI] [PubMed] [Google Scholar]
  50. Whitmer J. T., Kumar P., Solaro R. J. Calcium transport properties of cardiac sarcoplasmic reticulum from cardiomyopathic Syrian hamsters (BIO 53.58 and 14.6): evidence for a quantitative defect in dilated myopathic hearts not evident in hypertrophic hearts. Circ Res. 1988 Jan;62(1):81–85. doi: 10.1161/01.res.62.1.81. [DOI] [PubMed] [Google Scholar]
  51. Zorzato F., Volpe P., Damiani E., Quaglino D., Jr, Margreth A. Terminal cisternae of denervated rabbit skeletal muscle: alterations of functional properties of Ca2+ release channels. Am J Physiol. 1989 Sep;257(3 Pt 1):C504–C511. doi: 10.1152/ajpcell.1989.257.3.C504. [DOI] [PubMed] [Google Scholar]
  52. de la Bastie D., Levitsky D., Rappaport L., Mercadier J. J., Marotte F., Wisnewsky C., Brovkovich V., Schwartz K., Lompré A. M. Function of the sarcoplasmic reticulum and expression of its Ca2(+)-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res. 1990 Feb;66(2):554–564. doi: 10.1161/01.res.66.2.554. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES