Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jan;91(1):5–11. doi: 10.1172/JCI116199

Direct evidence for the absence of active Na+ reabsorption in hamster ascending thin limb of Henle's loop.

Y Kondo 1, K Abe 1, Y Igarashi 1, K Kudo 1, K Tada 1, K Yoshinaga 1
PMCID: PMC329988  PMID: 8380816

Abstract

The mechanisms of Na+ transport across cell membranes were investigated in the in vitro microperfused hamster ascending thin limb (ATL) of Henle's loop using a fluorescent Na+ indicator sodium-binding benzofuran isophthalate. The intracellular Na+ concentration ([Na+]i) of the ATL cells was 17.1 +/- 1.7 mM (n = 22) when the ATL was microperfused in vitro with Hepes-buffered solution containing 204 mM Na+. Elimination of metabolites such as glucose and alanine from the basolateral solution increased [Na+]i. Applying either 5 mM cyanide or 5 mM iodoacetic acid to the bath also increased [Na+]i. The elimination of K+ and the addition of 10(-4) M ouabain in the bath increased [Na+]i by 25.0 +/- 5.0 mM (n = 5) in 3 min and by 10.7 +/- 2.4 mM (n = 4), respectively. The elimination of luminal and basolateral Na+ resulted in a decrease in [Na+]i, indicating Na+ permeability of both the luminal and basolateral cell membranes. The luminal Na+ permeability was not affected by furosemide. The presence of luminal Na+ permeability and the basolateral Na+/K+ ATPase suggests the presence of net active reabsorption of Na+, which is not a physiologically important amount, in our estimation.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck F., Dörge A., Rick R., Thurau K. Intra- and extracellular element concentrations of rat renal papilla in antidiuresis. Kidney Int. 1984 Feb;25(2):397–403. doi: 10.1038/ki.1984.30. [DOI] [PubMed] [Google Scholar]
  2. Beck F., Dörge A., Rick R., Thurau K. Osmoregulation of renal papillary cells. Pflugers Arch. 1985;405 (Suppl 1):S28–S32. doi: 10.1007/BF00581776. [DOI] [PubMed] [Google Scholar]
  3. Borle A. B., Bender C. Effects of pH on Ca2+i, Na+i, and pHi of MDCK cells: Na(+)-Ca2+ and Na(+)-H+ antiporter interactions. Am J Physiol. 1991 Sep;261(3 Pt 1):C482–C489. doi: 10.1152/ajpcell.1991.261.3.C482. [DOI] [PubMed] [Google Scholar]
  4. Borle A. B., Borle C. J., Dobransky P., Gorecka-Tisera A. M., Bender C., Swain K. Effects of low extracellular Ca2+ on cytosolic free Ca2+, Na+, and pH of MDCK cells. Am J Physiol. 1990 Jul;259(1 Pt 1):C19–C25. doi: 10.1152/ajpcell.1990.259.1.C19. [DOI] [PubMed] [Google Scholar]
  5. Garg L. C., Knepper M. A., Burg M. B. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol. 1981 Jun;240(6):F536–F544. doi: 10.1152/ajprenal.1981.240.6.F536. [DOI] [PubMed] [Google Scholar]
  6. Harootunian A. T., Kao J. P., Eckert B. K., Tsien R. Y. Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes. J Biol Chem. 1989 Nov 15;264(32):19458–19467. [PubMed] [Google Scholar]
  7. Hogg R. J., Kokko J. P. Comparison between the electrical potential profile and the chloride gradients in the thin limbs of Henle's loop in rats. Kidney Int. 1978 Nov;14(5):428–436. doi: 10.1038/ki.1978.147. [DOI] [PubMed] [Google Scholar]
  8. Imai M., Kokko J. P. Mechanism of sodium and chloride transport in the thin ascending limb of Henle. J Clin Invest. 1976 Nov;58(5):1054–1060. doi: 10.1172/JCI108556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Imai M., Kokko J. P. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J Clin Invest. 1974 Feb;53(2):393–402. doi: 10.1172/JCI107572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Imai M., Kondo Y., Koseki C., Yoshitomi K. Dual effect of N-ethylmaleimide on Cl- transport across the thin ascending limb of Henle's loop. Pflugers Arch. 1988 May;411(5):520–528. doi: 10.1007/BF00582373. [DOI] [PubMed] [Google Scholar]
  11. Isozaki T., Yoshitomi K., Imai M. Effects of Cl- transport inhibitors on Cl- permeability across hamster ascending thin limb. Am J Physiol. 1989 Jul;257(1 Pt 2):F92–F98. doi: 10.1152/ajprenal.1989.257.1.F92. [DOI] [PubMed] [Google Scholar]
  12. Katz A. I., Doucet A., Morel F. Na-K-ATPase activity along the rabbit, rat, and mouse nephron. Am J Physiol. 1979 Aug;237(2):F114–F120. doi: 10.1152/ajprenal.1979.237.2.F114. [DOI] [PubMed] [Google Scholar]
  13. Kondo Y., Frömter E. Axial heterogeneity of sodium-bicarbonate cotransport in proximal straight tubule of rabbit kidney. Pflugers Arch. 1987 Nov;410(4-5):481–486. doi: 10.1007/BF00586529. [DOI] [PubMed] [Google Scholar]
  14. Kondo Y., Imai M. Effect of glutaraldehyde on renal tubular function. II. Selective inhibition of Cl- transport in the hamster thin ascending limb of Henle's loop. Pflugers Arch. 1987 May;408(5):484–490. doi: 10.1007/BF00585073. [DOI] [PubMed] [Google Scholar]
  15. Kondo Y., Yoshitomi K., Imai M. Effect of Ca2+ on Cl- transport in thin ascending limb of Henle's loop. Am J Physiol. 1988 Feb;254(2 Pt 2):F232–F239. doi: 10.1152/ajprenal.1988.254.2.F232. [DOI] [PubMed] [Google Scholar]
  16. Kondo Y., Yoshitomi K., Imai M. Effect of pH on Cl- transport in TAL of Henle's loop. Am J Physiol. 1987 Dec;253(6 Pt 2):F1216–F1222. doi: 10.1152/ajprenal.1987.253.6.F1216. [DOI] [PubMed] [Google Scholar]
  17. Kondo Y., Yoshitomi K., Imai M. Effects of anion transport inhibitors and ion substitution on Cl- transport in TAL of Henle's loop. Am J Physiol. 1987 Dec;253(6 Pt 2):F1206–F1215. doi: 10.1152/ajprenal.1987.253.6.F1206. [DOI] [PubMed] [Google Scholar]
  18. Koyama S., Yoshitomi K., Imai M. Effect of protamine on ion conductance of ascending thin limb of Henle's loop from hamsters. Am J Physiol. 1991 Oct;261(4 Pt 2):F593–F599. doi: 10.1152/ajprenal.1991.261.4.F593. [DOI] [PubMed] [Google Scholar]
  19. Marsh D. J., Azen S. P. Mechanism of NaCl reabsorption by hamster thin ascending limbs of Henle's loop. Am J Physiol. 1975 Jan;228(1):71–79. doi: 10.1152/ajplegacy.1975.228.1.71. [DOI] [PubMed] [Google Scholar]
  20. Marsh D. J., Martin C. M. Origin of electrical PD's in hamster thin ascending limbs of Henle's loop. Am J Physiol. 1977 Apr;232(4):F348–F357. doi: 10.1152/ajprenal.1977.232.4.F348. [DOI] [PubMed] [Google Scholar]
  21. Okada K., Ishikawa S., Saito T. Effect of vasopressin on Na+ kinetics in cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun. 1990 Nov 30;173(1):224–230. doi: 10.1016/s0006-291x(05)81045-9. [DOI] [PubMed] [Google Scholar]
  22. Stephenson J. L., Zhang Y., Tewarson R. Electrolyte, urea, and water transport in a two-nephron central core model of the renal medulla. Am J Physiol. 1989 Sep;257(3 Pt 2):F399–F413. doi: 10.1152/ajprenal.1989.257.3.F399. [DOI] [PubMed] [Google Scholar]
  23. Terada Y., Knepper M. A. Na+-K+-ATPase activities in renal tubule segments of rat inner medulla. Am J Physiol. 1989 Feb;256(2 Pt 2):F218–F223. doi: 10.1152/ajprenal.1989.256.2.F218. [DOI] [PubMed] [Google Scholar]
  24. Yoshitomi K., Kondo Y., Imai M. Evidence for conductive Cl- pathways across the cell membranes of the thin ascending limb of Henle's loop. J Clin Invest. 1988 Sep;82(3):866–871. doi: 10.1172/JCI113691. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES