Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jan;91(1):103–109. doi: 10.1172/JCI116157

Soluble complex of complement increases hydraulic conductivity in single microvessels of rat lung.

S Ishikawa 1, H Tsukada 1, J Bhattacharya 1
PMCID: PMC330002  PMID: 8423210

Abstract

We determined the effect of sera enriched with the soluble complex of complement (SC5b-9), on hydraulic conductivity (Lp) of single pulmonary venules (diameter 20-30 microns). Sera free of anticoagulants and blood cells were prepared from rat and human blood. Lp were determined by our split drop technique in isolated, blood-perfused lungs prepared from anesthetized rats (2% halothane; Sprague Dawley, 500 g; n = 73). Zymosan-activated (ZAS) and control sera were used for Lp determinations. In ZAS prepared from human serum, SC5b-9 concentration was > 300 micrograms/ml (control: < 1 microgram/ml) as determined by ELISA. At baseline, Lp averaged 3.4 +/- .4 x 10(-7) ml/(cm2.s.cm H2O), but it increased by 217 +/- 32% with undiluted ZAS (P < 0.05). The Lp increase correlated significantly with different ZAS dilutions for rat serum and with SC5b-9 concentration for human serum. Lp did not increase significantly with ZAS prepared from heat-treated sera, C6- and C8-deficient sera; or with ZAS in which SC5b-9 had been depleted by immunoprecipitation. The ZAS-induced increase of Lp was blocked completely by venular preinfusion with the arginine-glycine-aspartic acid (RGD) tripeptide (1 mg/ml, 10 min). We report for the first time that: (a) SC5b-9 increases lung endothelial Lp; and (b) the increase of Lp is attributable to an integrin-dependent mechanism.

Full text

PDF
103

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albelda S. M., Buck C. A. Integrins and other cell adhesion molecules. FASEB J. 1990 Aug;4(11):2868–2880. [PubMed] [Google Scholar]
  2. Baker P. J., Lint T. F., McLeod B. C., Behrends C. L., Gewurz H. Studies on the inhibition of C56-induced lysis (reactive lysis). VI. Modulation of C56-induced lysis polyanions and polycations. J Immunol. 1975 Feb;114(2 Pt 1):554–558. [PubMed] [Google Scholar]
  3. Bariety J., Hinglais N., Bhakdi S., Mandet C., Rouchon M., Kazatchkine M. D. Immunohistochemical study of complement S protein (Vitronectin) in normal and diseased human kidneys: relationship to neoantigens of the C5b-9 terminal complex. Clin Exp Immunol. 1989 Jan;75(1):76–81. [PMC free article] [PubMed] [Google Scholar]
  4. Bhakdi S., Hugo F., Tranum-Jensen J. Functions and relevance of the terminal complement sequence. Blut. 1990 Jun;60(6):309–318. doi: 10.1007/BF01737843. [DOI] [PubMed] [Google Scholar]
  5. Bhattacharya J., Gropper M. A., Staub N. C. Interstitial fluid pressure gradient measured by micropuncture in excised dog lung. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):271–277. doi: 10.1152/jappl.1984.56.2.271. [DOI] [PubMed] [Google Scholar]
  6. Bhattacharya J. Hydraulic conductivity of lung venules determined by split-drop technique. J Appl Physiol (1985) 1988 Jun;64(6):2562–2567. doi: 10.1152/jappl.1988.64.6.2562. [DOI] [PubMed] [Google Scholar]
  7. Biesecker G. The complement SC5b-9 complex mediates cell adhesion through a vitronectin receptor. J Immunol. 1990 Jul 1;145(1):209–214. [PubMed] [Google Scholar]
  8. Camussi G., Caldwell P. R., Andres G., Brentjens J. R. Lung injury mediated by antibodies to endothelium. II. Study of the effect of repeated antigen-antibody interactions in rabbits tolerant to heterologous antibody. Am J Pathol. 1987 May;127(2):216–228. [PMC free article] [PubMed] [Google Scholar]
  9. Chenais F., Virella G., Patrick C. C., Fudenberg H. H. Isolation of soluble immune complexes by affinity chromatography using staphylococcal protein A--Sepharose as substrate. J Immunol Methods. 1977;18(1-2):183–192. doi: 10.1016/0022-1759(77)90169-7. [DOI] [PubMed] [Google Scholar]
  10. Cheresh D. A. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6471–6475. doi: 10.1073/pnas.84.18.6471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DI CARLO F. J., FIORE J. V. On the composition of zymosan. Science. 1958 Apr 4;127(3301):756–757. doi: 10.1126/science.127.3301.756-a. [DOI] [PubMed] [Google Scholar]
  12. Dejana E., Colella S., Conforti G., Abbadini M., Gaboli M., Marchisio P. C. Fibronectin and vitronectin regulate the organization of their respective Arg-Gly-Asp adhesion receptors in cultured human endothelial cells. J Cell Biol. 1988 Sep;107(3):1215–1223. doi: 10.1083/jcb.107.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doumas B. T., Bayse D. D., Carter R. J., Peters T., Jr, Schaffer R. A candidate reference method for determination of total protein in serum. I. Development and validation. Clin Chem. 1981 Oct;27(10):1642–1650. [PubMed] [Google Scholar]
  14. Falk R. J., Podack E., Dalmasso A. P., Jennette J. C. Localization of S protein and its relationship to the membrane attack complex of complement in renal tissue. Am J Pathol. 1987 Apr;127(1):182–190. [PMC free article] [PubMed] [Google Scholar]
  15. Gawryl M. S., Simon M. T., Eatman J. L., Lint T. F. An enzyme-linked immunoabsorbent assay for the quantitation of the terminal complement complex from cell membranes or in activated human sera. J Immunol Methods. 1986 Dec 24;95(2):217–225. doi: 10.1016/0022-1759(86)90409-6. [DOI] [PubMed] [Google Scholar]
  16. Hogg J. C. Neutrophil kinetics and lung injury. Physiol Rev. 1987 Oct;67(4):1249–1295. doi: 10.1152/physrev.1987.67.4.1249. [DOI] [PubMed] [Google Scholar]
  17. Hugo F., Hamdoch T., Mathey D., Schäfer H., Bhakdi S. Quantitative measurement of SC5b-9 and C5b-9(m) in infarcted areas of human myocardium. Clin Exp Immunol. 1990 Jul;81(1):132–136. doi: 10.1111/j.1365-2249.1990.tb05303.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hugo F., Krämer S., Bhakdi S. Sensitive ELISA for quantitating the terminal membrane C5b-9 and fluid-phase SC5b-9 complex of human complement. J Immunol Methods. 1987 May 20;99(2):243–251. doi: 10.1016/0022-1759(87)90134-7. [DOI] [PubMed] [Google Scholar]
  19. Lampugnani M. G., Resnati M., Dejana E., Marchisio P. C. The role of integrins in the maintenance of endothelial monolayer integrity. J Cell Biol. 1991 Feb;112(3):479–490. doi: 10.1083/jcb.112.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Langlois P. F., Gawryl M. S. Accentuated formation of the terminal C5b-9 complement complex in patient plasma precedes development of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988 Aug;138(2):368–375. doi: 10.1164/ajrccm/138.2.368. [DOI] [PubMed] [Google Scholar]
  21. Müller-Eberhard H. J. The membrane attack complex of complement. Annu Rev Immunol. 1986;4:503–528. doi: 10.1146/annurev.iy.04.040186.002443. [DOI] [PubMed] [Google Scholar]
  22. Parsons P. E., Giclas P. C. The terminal complement complex (sC5b-9) is not specifically associated with the development of the adult respiratory distress syndrome. Am Rev Respir Dis. 1990 Jan;141(1):98–103. doi: 10.1164/ajrccm/141.1.98. [DOI] [PubMed] [Google Scholar]
  23. Podack E. R., Kolb W. P., Müller-Eberhard H. J. Purification of the sixth and seventh component of human complement without loss of hemolytic activity. J Immunol. 1976 Feb;116(2):263–269. [PubMed] [Google Scholar]
  24. Preissner K. T., Anders E., Grulich-Henn J., Müller-Berghaus G. Attachment of cultured human endothelial cells is promoted by specific association with S protein (vitronectin) as well as with the ternary S protein-thrombin-antithrombin III complex. Blood. 1988 Jun;71(6):1581–1589. [PubMed] [Google Scholar]
  25. Preissner K. T. Structure and biological role of vitronectin. Annu Rev Cell Biol. 1991;7:275–310. doi: 10.1146/annurev.cb.07.110191.001423. [DOI] [PubMed] [Google Scholar]
  26. Qiao R. L., Bhattacharya J. Segmental barrier properties of the pulmonary microvascular bed. J Appl Physiol (1985) 1991 Dec;71(6):2152–2159. doi: 10.1152/jappl.1991.71.6.2152. [DOI] [PubMed] [Google Scholar]
  27. Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  28. Seeger W., Hartmann R., Neuhoff H., Bhakdi S. Local complement activation, thromboxane-mediated vasoconstriction, and vascular leakage in isolated lungs. Role of the terminal complement sequence. Am Rev Respir Dis. 1989 Jan;139(1):88–99. doi: 10.1164/ajrccm/139.1.88. [DOI] [PubMed] [Google Scholar]
  29. Suzuki S., Pierschbacher M. D., Hayman E. G., Nguyen K., Ohgren Y., Ruoslahti E. Domain structure of vitronectin. Alignment of active sites. J Biol Chem. 1984 Dec 25;259(24):15307–15314. [PubMed] [Google Scholar]
  30. Till G. O., Johnson K. J., Kunkel R., Ward P. A. Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites. J Clin Invest. 1982 May;69(5):1126–1135. doi: 10.1172/JCI110548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Watson P. D. Effect of plasma and red blood cells on water permeability in cat hindlimb. Am J Physiol. 1984 Jun;246(6 Pt 2):H818–H823. doi: 10.1152/ajpheart.1984.246.6.H818. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES