Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jan;91(1):110–114. doi: 10.1172/JCI116158

Glucocorticoids stimulate rabbit proximal convoluted tubule acidification.

M Baum 1, R Quigley 1
PMCID: PMC330003  PMID: 8423211

Abstract

Glucocorticoids have an important role in renal acidification; however, a direct effect of glucocorticoids on proximal convoluted tubule (PCT) acidification has not been directly demonstrated. In the present in vitro microperfusion study PCT from animals receiving dexamethasone (600 micrograms/kg twice daily for 2 d and 2 h before killing) had a significantly higher rate of bicarbonate absorption than did controls (92.0 +/- 13.3 vs 59.9 +/- 3.2 pmol/mm.min, P < 0.01). To examine if glucocorticoids had a direct epithelial action, dexamethasone was added to the bath of PCT perfused in vitro. After 3 h of incubation in paired experiments 10(-6) M and 10(-5) M dexamethasone resulted in an approximately 30% stimulation in the rate of bicarbonate absorption. 10(-7) M dexamethasone and 10(-6) M aldosterone had no effect on bicarbonate absorption. The stimulation of acidification by 10(-5) M dexamethasone was blocked by actinomycin D and cycloheximide. These data are consistent with a direct effect of glucocorticoids on PCT acidification, and this effect is dependent upon protein synthesis.

Full text

PDF
110

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aperia A., Haldosén L. A., Larsson L., Gustafsson J. A. Ontogeny of triamcinolone-acetonide binding sites in outer cortical tissue from rat kidneys. Am J Physiol. 1985 Dec;249(6 Pt 2):F891–F897. doi: 10.1152/ajprenal.1985.249.6.F891. [DOI] [PubMed] [Google Scholar]
  2. Aperia A., Larsson L. Induced development of proximal tubular NaKATPase, basolateral cell membranes and fluid reabsorption. Acta Physiol Scand. 1984 Jun;121(2):133–141. doi: 10.1111/j.1748-1716.1984.tb07439.x. [DOI] [PubMed] [Google Scholar]
  3. Baum M., Quigley R. Prenatal glucocorticoids stimulate neonatal juxtamedullary proximal convoluted tubule acidification. Am J Physiol. 1991 Nov;261(5 Pt 2):F746–F752. doi: 10.1152/ajprenal.1991.261.5.F746. [DOI] [PubMed] [Google Scholar]
  4. Bidet M., Merot J., Tauc M., Poujeol P. Na+-H+ exchanger in proximal cells isolated from kidney. II. Short-term regulation by glucocorticoids. Am J Physiol. 1987 Nov;253(5 Pt 2):F945–F951. doi: 10.1152/ajprenal.1987.253.5.F945. [DOI] [PubMed] [Google Scholar]
  5. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  6. Dubrovsky A. H., Nair R. C., Byers M. K., Levine D. Z. Renal net acid excretion in the adrenalectomized rat. Kidney Int. 1981 Apr;19(4):516–528. doi: 10.1038/ki.1981.49. [DOI] [PubMed] [Google Scholar]
  7. Farman N., Oblin M. E., Lombes M., Delahaye F., Westphal H. M., Bonvalet J. P., Gasc J. M. Immunolocalization of gluco- and mineralocorticoid receptors in rabbit kidney. Am J Physiol. 1991 Feb;260(2 Pt 1):C226–C233. doi: 10.1152/ajpcell.1991.260.2.C226. [DOI] [PubMed] [Google Scholar]
  8. Farman N., Vandewalle A., Bonvalet J. P. Autoradiographic determination of dexamethasone binding sites along the rabbit nephron. Am J Physiol. 1983 Mar;244(3):F325–F334. doi: 10.1152/ajprenal.1983.244.3.F325. [DOI] [PubMed] [Google Scholar]
  9. Freiberg J. M., Kinsella J., Sacktor B. Glucocorticoids increase the Na+-H+ exchange and decrease the Na+ gradient-dependent phosphate-uptake systems in renal brush border membrane vesicles. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4932–4936. doi: 10.1073/pnas.79.16.4932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hulter H. N., Licht J. H., Bonner E. L., Jr, Glynn R. D., Sebastian A. Effects of glucocorticoid steroids on renal and systemic acid-base metabolism. Am J Physiol. 1980 Jul;239(1):F30–F43. doi: 10.1152/ajprenal.1980.239.1.F30. [DOI] [PubMed] [Google Scholar]
  11. Hulter H. N., Sigala J. F., Sebastian A. Effects of dexamethasone on renal and systemic acid-base metabolism. Kidney Int. 1981 Jul;20(1):43–49. doi: 10.1038/ki.1981.102. [DOI] [PubMed] [Google Scholar]
  12. Kinsella J. L., Freiberg J. M., Sacktor B. Glucocorticoid activation of Na+/H+ exchange in renal brush border vesicles: kinetic effects. Am J Physiol. 1985 Feb;248(2 Pt 2):F233–F239. doi: 10.1152/ajprenal.1985.248.2.F233. [DOI] [PubMed] [Google Scholar]
  13. Kinsella J., Cujdik T., Sacktor B. Na+-H+ exchange activity in renal brush border membrane vesicles in response to metabolic acidosis: The role of glucocorticoids. Proc Natl Acad Sci U S A. 1984 Jan;81(2):630–634. doi: 10.1073/pnas.81.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mishina T., Scholer D. W., Edelman I. S. Glucocorticoid receptors in rat kidney cortical tubules enriched in proximal and distal segments. Am J Physiol. 1981 Jan;240(1):F38–F45. doi: 10.1152/ajprenal.1981.240.1.F38. [DOI] [PubMed] [Google Scholar]
  15. Murer H., Hopfer U., Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J. 1976 Mar 15;154(3):597–604. [PMC free article] [PubMed] [Google Scholar]
  16. Noronha-Blob L., Sacktor B. Inhibition by glucocorticoids of phosphate transport in primary cultured renal cells. J Biol Chem. 1986 Feb 15;261(5):2164–2169. [PubMed] [Google Scholar]
  17. Poujeol P., Vandewalle A. Phosphate uptake by proximal cells isolated from rabbit kidney: role of dexamethasone. Am J Physiol. 1985 Jul;249(1 Pt 2):F74–F83. doi: 10.1152/ajprenal.1985.249.1.F74. [DOI] [PubMed] [Google Scholar]
  18. Quigley R., Baum M. Effects of growth hormone and insulin-like growth factor I on rabbit proximal convoluted tubule transport. J Clin Invest. 1991 Aug;88(2):368–374. doi: 10.1172/JCI115312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SARTORIUS O. W., CALHOON D., PITTS R. F. The capacity of the adrenalectomized rat to secrete hydrogen and ammonium ions. Endocrinology. 1952 Nov;51(5):444–450. doi: 10.1210/endo-51-5-444. [DOI] [PubMed] [Google Scholar]
  20. Sapir D. G., Pozefsky T., Knochel J. P., Walser M. The role of alanine and glutamine in steroid-induced nitrogen wasting in man. Clin Sci Mol Med. 1977 Sep;53(3):215–220. doi: 10.1042/cs0530215. [DOI] [PubMed] [Google Scholar]
  21. Schuster V. L., Kokko J. P., Jacobson H. R. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest. 1984 Feb;73(2):507–515. doi: 10.1172/JCI111237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Welbourne T. C., Phenix P., Thornley-Brown C., Welbourne C. J. Triamcinolone activation of renal ammonia production. Proc Soc Exp Biol Med. 1976 Dec;153(3):539–542. doi: 10.3181/00379727-153-39587. [DOI] [PubMed] [Google Scholar]
  23. Wilcox C. S., Cemerikic D. A., Giebisch G. Differential effects of acute mineralo- and glucocorticosteroid administration on renal acid elimination. Kidney Int. 1982 Apr;21(4):546–556. doi: 10.1038/ki.1982.61. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES