Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jan;91(1):235–243. doi: 10.1172/JCI116176

Peptidase modulation of vasoactive intestinal peptide pulmonary relaxation in tracheal superfused guinea pig lungs.

C M Lilly 1, M A Martins 1, J M Drazen 1
PMCID: PMC330019  PMID: 7678603

Abstract

The effects of enzyme inhibitors on vasoactive intestinal peptide (VIP)-induced decreases in airway opening pressure (PaO) and VIP-like immunoreactivity (VIP-LI) recovery were studied in isolated tracheal superfused guinea pig lungs. In the absence of inhibitors, VIP 0.38 (95% CI 0.33-0.54) nmol/kg animal, resulted in a 50% decrease in PaO and 33% of a 1 nmol/kg VIP dose was recovered as intact VIP. In the presence of two combinations of enzyme inhibitors, SCH 32615 (S, 10 microM) and aprotinin (A, 500 tyrpsin inhibitor units [TIU]/kg) or S and soybean trypsin inhibitor (T, 500 TIU/kg), VIP caused a significantly greater decrease in PaO and greater quantities of VIP were recovered from lung effluent (both P < 0.001). The addition of captopril, (3 microM), leupeptin (4 microM), or bestatin (1 microM) failed to further increase pulmonary relaxation or recovery of VIP-LI. When given singly, A, T, and S did not augment the effects or recovery of VIP. The efficacy of S (a specific inhibitor of neutral endopeptidase [NEP]) and A and T (serine protease inhibitors) thus implicated NEP and at least one serine protease as primary modulators of VIP activity in the guinea pig lung. We sought to corroborate this finding by characterizing the predominant amino acid sites at which VIP is hydrolized in the lung. When [mono(125I)iodo-Tyr10]VIP was offered to the lung, in the presence and absence of the active inhibitors, cleavage products consistent with activity by NEP and a tryptic enzyme were recovered. These data demonstrate that NEP and a peptidase with an inhibitor profile and cleavage pattern compatible with a tryptic enzyme inactivate VIP in a physiologically competitive manner.

Full text

PDF
235

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodanszky M., Klausner Y. S., Said S. I. Biological activities of synthetic peptides corresponding to fragments of and to the entire sequence of the vasoactive intestinal peptide. Proc Natl Acad Sci U S A. 1973 Feb;70(2):382–384. doi: 10.1073/pnas.70.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caughey G. H., Leidig F., Viro N. F., Nadel J. A. Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. J Pharmacol Exp Ther. 1988 Jan;244(1):133–137. [PubMed] [Google Scholar]
  3. Caughey G. H. Roles of mast cell tryptase and chymase in airway function. Am J Physiol. 1989 Aug;257(2 Pt 1):L39–L46. doi: 10.1152/ajplung.1989.257.2.L39. [DOI] [PubMed] [Google Scholar]
  4. Caughey G. H., Viro N. F., Lazarus S. C., Nadel J. A. Purification and characterization of dog mastocytoma chymase: identification of an octapeptide conserved in chymotryptic leukocyte proteinases. Biochim Biophys Acta. 1988 Jan 29;952(2):142–149. doi: 10.1016/0167-4838(88)90109-4. [DOI] [PubMed] [Google Scholar]
  5. Caughey G. H., Viro N. F., Ramachandran J., Lazarus S. C., Borson D. B., Nadel J. A. Dog mastocytoma tryptase: affinity purification, characterization, and amino-terminal sequence. Arch Biochem Biophys. 1987 Nov 1;258(2):555–563. doi: 10.1016/0003-9861(87)90377-8. [DOI] [PubMed] [Google Scholar]
  6. Chiu H., Lagunoff D. Histochemical comparison of vertebrate mast cells. Histochem J. 1972 Mar;4(2):135–144. doi: 10.1007/BF01004972. [DOI] [PubMed] [Google Scholar]
  7. Coles S. J., Said S. I., Reid L. M. Inhibition by vasoactive intestinal peptide of glycoconjugate and lysozyme secretion by human airways in vitro. Am Rev Respir Dis. 1981 Nov;124(5):531–536. doi: 10.1164/arrd.1981.124.5.531. [DOI] [PubMed] [Google Scholar]
  8. Dey R. D., Altemus J. B., Michalkiewicz M. Distribution of vasoactive intestinal peptide- and substance P-containing nerves originating from neurons of airway ganglia in cat bronchi. J Comp Neurol. 1991 Feb 8;304(2):330–340. doi: 10.1002/cne.903040213. [DOI] [PubMed] [Google Scholar]
  9. Dey R. D., Shannon W. A., Jr, Said S. I. Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cat, and human subjects. Cell Tissue Res. 1981;220(2):231–238. doi: 10.1007/BF00210505. [DOI] [PubMed] [Google Scholar]
  10. Dusser D. J., Umeno E., Graf P. D., Djokic T., Borson D. B., Nadel J. A. Airway neutral endopeptidase-like enzyme modulates tachykinin-induced bronchoconstriction in vivo. J Appl Physiol (1985) 1988 Dec;65(6):2585–2591. doi: 10.1152/jappl.1988.65.6.2585. [DOI] [PubMed] [Google Scholar]
  11. Erdös E. G., Skidgel R. A. Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J. 1989 Feb;3(2):145–151. [PubMed] [Google Scholar]
  12. Farmer S. G., Togo J. Effects of epithelium removal on relaxation of airway smooth muscle induced by vasoactive intestinal peptide and electrical field stimulation. Br J Pharmacol. 1990 May;100(1):73–78. doi: 10.1111/j.1476-5381.1990.tb12054.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Folkesson R., Neil A., Terenius L. Enzyme-linked immunosorbent assay of substance P and its metabolite SP 1-7. A comparison with RIA. J Neurosci Methods. 1985 Aug;14(3):169–176. doi: 10.1016/0165-0270(85)90032-9. [DOI] [PubMed] [Google Scholar]
  14. Franconi G. M., Graf P. D., Lazarus S. C., Nadel J. A., Caughey G. H. Mast cell tryptase and chymase reverse airway smooth muscle relaxation induced by vasoactive intestinal peptide in the ferret. J Pharmacol Exp Ther. 1989 Mar;248(3):947–951. [PubMed] [Google Scholar]
  15. Goetzl E. J., Sreedharan S. P., Turck C. W., Bridenbaugh R., Malfroy B. Preferential cleavage of amino- and carboxyl-terminal oligopeptides from vasoactive intestinal polypeptide by human recombinant enkephalinase (neutral endopeptidase, EC 3.4.24.11). Biochem Biophys Res Commun. 1989 Feb 15;158(3):850–854. doi: 10.1016/0006-291x(89)92800-3. [DOI] [PubMed] [Google Scholar]
  16. Hachisu M., Hiranuma T., Tani S., Iizuka T. Enzymatic degradation of helodermin and vasoactive intestinal polypeptide. J Pharmacobiodyn. 1991 Mar;14(3):126–131. doi: 10.1248/bpb1978.14.126. [DOI] [PubMed] [Google Scholar]
  17. Laitinen A., Partanen M., Hervonen A., Pelto-Huikko M., Laitinen L. A. VIP like immunoreactive nerves in human respiratory tract. Light and electron microscopic study. Histochemistry. 1985;82(4):313–319. doi: 10.1007/BF00494059. [DOI] [PubMed] [Google Scholar]
  18. Martin J. L., Rose K., Hughes G. J., Magistretti P. J. [mono[125I]iodo-Tyr10,MetO17]-vasoactive intestinal polypeptide. Preparation, characterization, and use for radioimmunoassay and receptor binding. J Biol Chem. 1986 Apr 25;261(12):5320–5327. [PubMed] [Google Scholar]
  19. Martins M. A., Shore S. A., Gerard N. P., Gerard C., Drazen J. M. Peptidase modulation of the pulmonary effects of tachykinins in tracheal superfused guinea pig lungs. J Clin Invest. 1990 Jan;85(1):170–176. doi: 10.1172/JCI114408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsas R., Kenny A. J., Turner A. J. The metabolism of neuropeptides. The hydrolysis of peptides, including enkephalins, tachykinins and their analogues, by endopeptidase-24.11. Biochem J. 1984 Oct 15;223(2):433–440. doi: 10.1042/bj2230433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Newson B., Dahlström A., Enerbäck L., Ahlman H. Suggestive evidence for a direct innervation of mucosal mast cells. Neuroscience. 1983 Oct;10(2):565–570. doi: 10.1016/0306-4522(83)90153-7. [DOI] [PubMed] [Google Scholar]
  22. Palmer J. B., Cuss F. M., Barnes P. J. VIP and PHM and their role in nonadrenergic inhibitory responses in isolated human airways. J Appl Physiol (1985) 1986 Oct;61(4):1322–1328. doi: 10.1152/jappl.1986.61.4.1322. [DOI] [PubMed] [Google Scholar]
  23. Powers J. C., Tanaka T., Harper J. W., Minematsu Y., Barker L., Lincoln D., Crumley K. V., Fraki J. E., Schechter N. M., Lazarus G. G. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Biochemistry. 1985 Apr 9;24(8):2048–2058. doi: 10.1021/bi00329a037. [DOI] [PubMed] [Google Scholar]
  24. Reynolds D. S., Gurley D. S., Austen K. F., Serafin W. E. Cloning of the cDNA and gene of mouse mast cell protease-6. Transcription by progenitor mast cells and mast cells of the connective tissue subclass. J Biol Chem. 1991 Feb 25;266(6):3847–3853. [PubMed] [Google Scholar]
  25. Ryan J. W. Peptidase enzymes of the pulmonary vascular surface. Am J Physiol. 1989 Aug;257(2 Pt 1):L53–L60. doi: 10.1152/ajplung.1989.257.2.L53. [DOI] [PubMed] [Google Scholar]
  26. Saga T., Said S. I. Vasoactive intestinal peptide relaxes isolated strips of human bronchus, pulmonary artery, and lung parenchyma. Trans Assoc Am Physicians. 1984;97:304–310. [PubMed] [Google Scholar]
  27. Schwartz L. B., Lewis R. A., Seldin D., Austen K. F. Acid hydrolases and tryptase from secretory granules of dispersed human lung mast cells. J Immunol. 1981 Apr;126(4):1290–1294. [PubMed] [Google Scholar]
  28. Serafin W. E., Reynolds D. S., Rogelj S., Lane W. S., Conder G. A., Johnson S. S., Austen K. F., Stevens R. L. Identification and molecular cloning of a novel mouse mucosal mast cell serine protease. J Biol Chem. 1990 Jan 5;265(1):423–429. [PubMed] [Google Scholar]
  29. Shikada K., Yamamoto A., Tanaka S. Effects of phosphodiesterase inhibitors on vasoactive intestinal peptide-induced relaxation of isolated guinea-pig trachea. Eur J Pharmacol. 1991 Apr 3;195(3):389–394. doi: 10.1016/0014-2999(91)90480-e. [DOI] [PubMed] [Google Scholar]
  30. Stead R. H., Tomioka M., Quinonez G., Simon G. T., Felten S. Y., Bienenstock J. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc Natl Acad Sci U S A. 1987 May;84(9):2975–2979. doi: 10.1073/pnas.84.9.2975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stretton C. D., Belvisi M. G., Barnes P. J. Sensory nerve depletion potentiates inhibitory non-adrenergic, non-cholinergic nerves in guinea-pig airways. Eur J Pharmacol. 1990 Aug 10;184(2-3):333–337. doi: 10.1016/0014-2999(90)90628-j. [DOI] [PubMed] [Google Scholar]
  32. Tam E. K., Franconi G. M., Nadel J. A., Caughey G. H. Protease inhibitors potentiate smooth muscle relaxation induced by vasoactive intestinal peptide in isolated human bronchi. Am J Respir Cell Mol Biol. 1990 May;2(5):449–452. doi: 10.1165/ajrcmb/2.5.449. [DOI] [PubMed] [Google Scholar]
  33. Tanaka T., McRae B. J., Cho K., Cook R., Fraki J. E., Johnson D. A., Powers J. C. Mammalian tissue trypsin-like enzymes. Comparative reactivities of human skin tryptase, human lung tryptase, and bovine trypsin with peptide 4-nitroanilide and thioester substrates. J Biol Chem. 1983 Nov 25;258(22):13552–13557. [PubMed] [Google Scholar]
  34. Thompson D. C., Diamond L., Altiere R. J. Enzymatic modulation of vasoactive intestinal peptide and nonadrenergic noncholinergic inhibitory responses in guinea pig tracheae. Am Rev Respir Dis. 1990 Nov;142(5):1119–1123. doi: 10.1164/ajrccm/142.5.1119. [DOI] [PubMed] [Google Scholar]
  35. Webber S. E., Widdicombe J. G. The effect of vasoactive intestinal peptide on smooth muscle tone and mucus secretion from the ferret trachea. Br J Pharmacol. 1987 May;91(1):139–148. doi: 10.1111/j.1476-5381.1987.tb08992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wiesner-Menzel L., Schulz B., Vakilzadeh F., Czarnetzki B. M. Electron microscopical evidence for a direct contact between nerve fibres and mast cells. Acta Derm Venereol. 1981;61(6):465–469. doi: 10.2340/0001555561465469. [DOI] [PubMed] [Google Scholar]
  37. Yaksh T. L., Sabbe M. B., Lucas D., Mjanger E., Chipkin R. E. Effects of [N-(L-(1-carboxy-2-phenyl)ethyl]-L-phenylalanyl-beta-alanine (SCH32615), a neutral endopeptidase (enkephalinase) inhibitor, on levels of enkephalin, encrypted enkephalins and substance P in cerebrospinal fluid and plasma of primates. J Pharmacol Exp Ther. 1991 Mar;256(3):1033–1041. [PubMed] [Google Scholar]
  38. de Nucci G., Moncada S. Release of vasoactive substances from guinea pig isolated lungs perfused via the trachea. Am Rev Respir Dis. 1987 Jun;135(6 Pt 2):S39–S41. doi: 10.1164/arrd.1987.135.6P2.S39. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES