Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jan;91(1):308–318. doi: 10.1172/JCI116187

Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen.

J S Stamler 1, J A Osborne 1, O Jaraki 1, L E Rabbani 1, M Mullins 1, D Singel 1, J Loscalzo 1
PMCID: PMC330028  PMID: 8380812

Abstract

Elevated levels of homocysteine are associated with an increased risk of atherosclerosis and thrombosis. The reactivity of the sulfhydryl group of homocysteine has been implicated in molecular mechanisms underlying this increased risk. There is also increasingly compelling evidence that thiols react in the presence of nitric oxide (NO) and endothelium-derived relaxing factor (EDRF) to form S-nitrosothiols, compounds with potent vasodilatory and antiplatelet effects. We, therefore, hypothesized that S-nitrosation of homocysteine would confer these beneficial bioactivities to the thiol, and at the same time attenuate its pathogenicity. We found that prolonged (> 3 h) exposure of endothelial cells to homocysteine results in impaired EDRF responses. By contrast, brief (15 min) exposure of endothelial cells, stimulated to secrete EDRF, to homocysteine results in the formation of S-NO-homocysteine, a potent antiplatelet agent and vasodilator. In contrast to homocysteine, S-NO-homocysteine does not support H2O2 generation and does not undergo conversion to homocysteine thiolactone, reaction products believed to contribute to endothelial toxicity. These results suggest that the normal endothelium modulates the potential, adverse effects of homocysteine by releasing EDRF and forming the adduct S-NO-homocysteine. The adverse vascular properties of homocysteine may result from an inability to sustain S-NO formation owing to a progressive imbalance between the production of NO by progressively dysfunctional endothelial cells and the levels of homocysteine.

Full text

PDF
308

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORN G. V., CROSS M. J. THE AGGREGATION OF BLOOD PLATELETS. J Physiol. 1963 Aug;168:178–195. doi: 10.1113/jphysiol.1963.sp007185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonnett R., Holleyhead R., Johnson B. L., Randall E. W. Reaction of acidified nitrite solutions with peptide derivatives: evidence for nitrosamine and thionitrite formation from 15N N.m.r. studies. J Chem Soc Perkin 1. 1975;(22):2261–2241. doi: 10.1039/p19750002261. [DOI] [PubMed] [Google Scholar]
  3. Clarke R., Daly L., Robinson K., Naughten E., Cahalane S., Fowler B., Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991 Apr 25;324(17):1149–1155. doi: 10.1056/NEJM199104253241701. [DOI] [PubMed] [Google Scholar]
  4. Davies P. F., Truskey G. A., Warren H. B., O'Connor S. E., Eisenhaure B. H. Metabolic cooperation between vascular endothelial cells and smooth muscle cells in co-culture: changes in low density lipoprotein metabolism. J Cell Biol. 1985 Sep;101(3):871–879. doi: 10.1083/jcb.101.3.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis J. W., Flournoy L. D., Phillips P. E. Amino acids and collagen-induced platelet aggregation. Lack of effect of three amino acids that are elevated in homocystinuria. Am J Dis Child. 1975 Sep;129(9):1020–1021. doi: 10.1001/archpedi.1975.02120460010003. [DOI] [PubMed] [Google Scholar]
  6. EGER W. Die Bedeutung der Sulfhydryl-, Amino- und Carboxy-Gruppen kurzkettiger Kohlenstoffverbindungen für ihre nekrotrope Leberschutzwirkung. Arzneimittelforschung. 1957 Oct;7(10):601–606. [PubMed] [Google Scholar]
  7. Feelisch M., Noack E. A. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol. 1987 Jul 2;139(1):19–30. doi: 10.1016/0014-2999(87)90493-6. [DOI] [PubMed] [Google Scholar]
  8. Graeber J. E., Slott J. H., Ulane R. E., Schulman J. D., Stuart M. J. Effect of homocysteine and homocystine on platelet and vascular arachidonic acid metabolism. Pediatr Res. 1982 Jun;16(6):490–493. doi: 10.1203/00006450-198206000-00018. [DOI] [PubMed] [Google Scholar]
  9. Harker L. A., Ross R., Slichter S. J., Scott C. R. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976 Sep;58(3):731–741. doi: 10.1172/JCI108520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harker L. A., Slichter S. J., Scott C. R., Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974 Sep 12;291(11):537–543. doi: 10.1056/NEJM197409122911101. [DOI] [PubMed] [Google Scholar]
  11. Hawiger J., Parkinson S., Timmons S. Prostacyclin inhibits mobilisation of fibrinogen-binding sites on human ADP- and thrombin-treated platelets. Nature. 1980 Jan 10;283(5743):195–197. doi: 10.1038/283195a0. [DOI] [PubMed] [Google Scholar]
  12. Heinecke J. W., Rosen H., Suzuki L. A., Chait A. The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. J Biol Chem. 1987 Jul 25;262(21):10098–10103. [PubMed] [Google Scholar]
  13. Hilden M., Brandt N. J., Nilsson I. M., Schonheyder F. Investigations of coagulation and fibrinolysis in homocystinuria. Acta Med Scand. 1974 Jun;195(6):533–535. doi: 10.1111/j.0954-6820.1974.tb08184.x. [DOI] [PubMed] [Google Scholar]
  14. Hill-Zobel R. L., Pyeritz R. E., Scheffel U., Malpica O., Engin S., Camargo E. E., Abbott M., Guilarte T. R., Hill J., McIntyre P. A. Kinetics and distribution of 111Indium-labeled platelets in patients with homocystinuria. N Engl J Med. 1982 Sep 23;307(13):781–786. doi: 10.1056/NEJM198209233071303. [DOI] [PubMed] [Google Scholar]
  15. Hill-Zobel R. L., Pyeritz R. E., Scheffel U., Malpica O., Engin S., Camargo E. E., Abbott M., Guilarte T. R., Hill J., McIntyre P. A. Kinetics and distribution of 111Indium-labeled platelets in patients with homocystinuria. N Engl J Med. 1982 Sep 23;307(13):781–786. doi: 10.1056/NEJM198209233071303. [DOI] [PubMed] [Google Scholar]
  16. Hofmann J., Lösche W., Hofmann B., Arese P., Bosia A., Pescarmona G., Till U. Effect of compounds causing reversible perturbation of the cellular thiol-disulfide status on the aggregation of human blood platelets. Biomed Biochim Acta. 1983;42(5):479–487. [PubMed] [Google Scholar]
  17. Huzoor-Akbar, Romstedt K. 3-Deazaadenosine and L-homocysteine inhibit human platelet activation induced by arachidonic acid, U46619 and phospholipase C. Thromb Res. 1984 Nov 15;36(4):369–376. doi: 10.1016/0049-3848(84)90329-3. [DOI] [PubMed] [Google Scholar]
  18. Ignarro L. J. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989 Jul;65(1):1–21. doi: 10.1161/01.res.65.1.1. [DOI] [PubMed] [Google Scholar]
  19. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ignarro L. J., Edwards J. C., Gruetter D. Y., Barry B. K., Gruetter C. A. Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett. 1980 Feb 11;110(2):275–278. doi: 10.1016/0014-5793(80)80091-3. [DOI] [PubMed] [Google Scholar]
  21. James T. N. The spectrum of diseases of small coronary arteries and their physiologic consequences. J Am Coll Cardiol. 1990 Mar 15;15(4):763–774. doi: 10.1016/0735-1097(90)90272-q. [DOI] [PubMed] [Google Scholar]
  22. Kang S. S., Wong P. W., Cook H. Y., Norusis M., Messer J. V. Protein-bound homocyst(e)ine. A possible risk factor for coronary artery disease. J Clin Invest. 1986 May;77(5):1482–1486. doi: 10.1172/JCI112461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kowaluk E. A., Fung H. L. Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S-nitrosothiols. J Pharmacol Exp Ther. 1990 Dec;255(3):1256–1264. [PubMed] [Google Scholar]
  24. MCDONALD L., BRAY C., FIELD C., LOVE F., DAVIES B. HOMOCYSTINURIA, THROMBOSIS, AND THE BLOOD-PLATELETS. Lancet. 1964 Apr 4;1(7336):745–746. doi: 10.1016/s0140-6736(64)92852-1. [DOI] [PubMed] [Google Scholar]
  25. Malinow M. R. Hyperhomocyst(e)inemia. A common and easily reversible risk factor for occlusive atherosclerosis. Circulation. 1990 Jun;81(6):2004–2006. doi: 10.1161/01.cir.81.6.2004. [DOI] [PubMed] [Google Scholar]
  26. McCully K. S., Carvalho A. C. Homocysteine thiolactone, N-homocysteine thiolactonyl retinamide, and platelet aggregation. Res Commun Chem Pathol Pharmacol. 1987 Jun;56(3):349–360. [PubMed] [Google Scholar]
  27. McCully K. S. Homocysteine metabolism in scurvy, growth and arteriosclerosis. Nature. 1971 Jun 11;231(5302):391–392. doi: 10.1038/231391a0. [DOI] [PubMed] [Google Scholar]
  28. McCully K. S., Ragsdale B. D. Production of arteriosclerosis by homocysteinemia. Am J Pathol. 1970 Oct;61(1):1–11. [PMC free article] [PubMed] [Google Scholar]
  29. McCully K. S., Wilson R. B. Homocysteine theory of arteriosclerosis. Atherosclerosis. 1975 Sep-Oct;22(2):215–227. doi: 10.1016/0021-9150(75)90004-0. [DOI] [PubMed] [Google Scholar]
  30. Mollace V., Salvemini D., Sessa W. C., Vane J. R. Inhibition of human platelet aggregation by endothelium-derived relaxing factor, sodium nitroprusside or iloprost is potentiated by captopril and reduced thiols. J Pharmacol Exp Ther. 1991 Sep;258(3):820–823. [PubMed] [Google Scholar]
  31. Myers P. R., Minor R. L., Jr, Guerra R., Jr, Bates J. N., Harrison D. G. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature. 1990 May 10;345(6271):161–163. doi: 10.1038/345161a0. [DOI] [PubMed] [Google Scholar]
  32. Nishiuch Y., Sasaki M., Nakayasu M., Oikawa A. Cytotoxicity of cysteine in culture media. In Vitro. 1976 Sep;12(9):635–638. doi: 10.1007/BF02797462. [DOI] [PubMed] [Google Scholar]
  33. Osborne J. A., Lento P. H., Siegfried M. R., Stahl G. L., Fusman B., Lefer A. M. Cardiovascular effects of acute hypercholesterolemia in rabbits. Reversal with lovastatin treatment. J Clin Invest. 1989 Feb;83(2):465–473. doi: 10.1172/JCI113905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  35. Parthasarathy S. Oxidation of low-density lipoprotein by thiol compounds leads to its recognition by the acetyl LDL receptor. Biochim Biophys Acta. 1987 Feb 14;917(2):337–340. doi: 10.1016/0005-2760(87)90139-1. [DOI] [PubMed] [Google Scholar]
  36. Perry T. L., Hansen S., MacDougall L., Warrington P. D. Sulfur-containing amino acids in the plasma and urine of homocystinurics. Clin Chim Acta. 1967 Mar;15(3):409–420. doi: 10.1016/0009-8981(67)90005-8. [DOI] [PubMed] [Google Scholar]
  37. Phillips P. G., Tsan M. F. Direct staining and visualization of endothelial monolayers cultured on synthetic polycarbonate filters. J Histochem Cytochem. 1988 May;36(5):551–554. doi: 10.1177/36.5.3356897. [DOI] [PubMed] [Google Scholar]
  38. Randon J., Lecompte T., Chignard M., Siess W., Marlas G., Dray F., Vargaftig B. B. Dissociation of platelet activation from transmethylation of their membrane phospholipids. Nature. 1981 Oct 22;293(5834):660–662. doi: 10.1038/293660a0. [DOI] [PubMed] [Google Scholar]
  39. Refsum H., Helland S., Ueland P. M. Radioenzymic determination of homocysteine in plasma and urine. Clin Chem. 1985 Apr;31(4):624–628. [PubMed] [Google Scholar]
  40. Rodgers G. M., Conn M. T. Homocysteine, an atherogenic stimulus, reduces protein C activation by arterial and venous endothelial cells. Blood. 1990 Feb 15;75(4):895–901. [PubMed] [Google Scholar]
  41. Rodgers G. M., Kane W. H. Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator. J Clin Invest. 1986 Jun;77(6):1909–1916. doi: 10.1172/JCI112519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Root R. K., Metcalf J., Oshino N., Chance B. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest. 1975 May;55(5):945–955. doi: 10.1172/JCI108024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schwartz S. M. Selection and characterization of bovine aortic endothelial cells. In Vitro. 1978 Dec;14(12):966–980. doi: 10.1007/BF02616210. [DOI] [PubMed] [Google Scholar]
  44. Sedlak J., Lindsay R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem. 1968 Oct 24;25(1):192–205. doi: 10.1016/0003-2697(68)90092-4. [DOI] [PubMed] [Google Scholar]
  45. Spindel E., McCully K. S. Conversion of methionine to homocysteine thiolactone in liver. Biochim Biophys Acta. 1974 May 24;343(3):687–691. doi: 10.1016/0304-4165(74)90290-6. [DOI] [PubMed] [Google Scholar]
  46. Stamler J. S., Jaraki O., Osborne J., Simon D. I., Keaney J., Vita J., Singel D., Valeri C. R., Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7674–7677. doi: 10.1073/pnas.89.16.7674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stamler J. S., Loscalzo J. Capillary zone electrophoretic detection of biological thiols and their S-nitrosated derivatives. Anal Chem. 1992 Apr 1;64(7):779–785. doi: 10.1021/ac00031a014. [DOI] [PubMed] [Google Scholar]
  48. Stamler J. S., Simon D. I., Osborne J. A., Mullins M. E., Jaraki O., Michel T., Singel D. J., Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):444–448. doi: 10.1073/pnas.89.1.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stamler J., Cunningham M., Loscalzo J. Reduced thiols and the effect of intravenous nitroglycerin on platelet aggregation. Am J Cardiol. 1988 Sep 1;62(7):377–380. doi: 10.1016/0002-9149(88)90962-9. [DOI] [PubMed] [Google Scholar]
  50. Stamler J., Mendelsohn M. E., Amarante P., Smick D., Andon N., Davies P. F., Cooke J. P., Loscalzo J. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ Res. 1989 Sep;65(3):789–795. doi: 10.1161/01.res.65.3.789. [DOI] [PubMed] [Google Scholar]
  51. Starkebaum G., Harlan J. M. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest. 1986 Apr;77(4):1370–1376. doi: 10.1172/JCI112442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Thomas G., Skrinska V. A., Lucas F. V. The influence of glutathione and other thiols on human platelet aggregation. Thromb Res. 1986 Dec 15;44(6):859–866. doi: 10.1016/0049-3848(86)90031-9. [DOI] [PubMed] [Google Scholar]
  53. Wall R. T., Harlan J. M., Harker L. A., Striker G. E. Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury. Thromb Res. 1980 Apr 1;18(1-2):113–121. doi: 10.1016/0049-3848(80)90175-9. [DOI] [PubMed] [Google Scholar]
  54. Wei E. P., Kontos H. A. H2O2 and endothelium-dependent cerebral arteriolar dilation. Implications for the identity of endothelium-derived relaxing factor generated by acetylcholine. Hypertension. 1990 Aug;16(2):162–169. doi: 10.1161/01.hyp.16.2.162. [DOI] [PubMed] [Google Scholar]
  55. Zucker M. B., Masiello N. C. Platelet aggregation caused by dithiothreitol. Thromb Haemost. 1984 Feb 28;51(1):119–124. [PubMed] [Google Scholar]
  56. Zweifler A. J., Allen R. J. An intrinsic blood platelet abnormality in an homocystinuric boy, corrected by pyridoxine administration. Thromb Diath Haemorrh. 1971 Aug 31;26(1):15–21. [PubMed] [Google Scholar]
  57. de Groot P. G., Willems C., Boers G. H., Gonsalves M. D., van Aken W. G., van Mourik J. A. Endothelial cell dysfunction in homocystinuria. Eur J Clin Invest. 1983 Oct;13(5):405–410. doi: 10.1111/j.1365-2362.1983.tb00121.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES