Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Dec;94(6):2193–2199. doi: 10.1172/JCI117580

Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning.

N Yamashita 1, M Nishida 1, S Hoshida 1, T Kuzuya 1, M Hori 1, N Taniguchi 1, T Kamada 1, M Tada 1
PMCID: PMC330044  PMID: 7989574

Abstract

Manganese superoxide dismutase (Mn-SOD) is induced in ischemic hearts 24 h after ischemic preconditioning, when tolerance to ischemia is acquired. We examined the relationship between Mn-SOD induction and the protective effect of preconditioning using cultured rat cardiac myocytes. Exposure of cardiac myocytes to brief hypoxia (1 h) decreased creatine kinase release induced by sustained hypoxia (3 h) that follows when the sustained hypoxia was applied 24 h after hypoxic preconditioning (57% of that in cells without preconditioning). The activity and content of Mn-SOD in cardiac myocytes were increased 24 h after hypoxic preconditioning (activity, 170%; content, 139% compared with cells without preconditioning) coincidentally with the acquisition of tolerance to hypoxia. Mn-SOD mRNA was also increased 20-40 min after preconditioning. Antisense oligodeoxyribonucleotides corresponding to the initiation site of Mn-SOD translation inhibited the increases in the Mn-SOD content and activity and abolished the expected decrease in creatine kinase release induced by sustained hypoxia after 24 h of hypoxic preconditioning. Sense oligodeoxyribonucleotides did not abolish either Mn-SOD induction or tolerance to hypoxia. These results suggest that the induction of Mn-SOD in myocytes by preconditioning plays a pivotal role in the acquisition of tolerance to ischemia at a later phase (24 h) of ischemic preconditioning.

Full text

PDF
2193

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Orchard C. H. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987 Feb;60(2):153–168. doi: 10.1161/01.res.60.2.153. [DOI] [PubMed] [Google Scholar]
  2. Armstrong S., Downey J. M., Ganote C. E. Preconditioning of isolated rabbit cardiomyocytes: induction by metabolic stress and blockade by the adenosine antagonist SPT and calphostin C, a protein kinase C inhibitor. Cardiovasc Res. 1994 Jan;28(1):72–77. doi: 10.1093/cvr/28.1.72. [DOI] [PubMed] [Google Scholar]
  3. Barrett L. V., Murphy J. R., Strom T. B., Kirkman R. L. Treatment with a diphtheria toxin-related interleukin 2 fusion protein prolongs cardiac allograft survival in mice. Transplant Proc. 1989 Feb;21(1 Pt 1):1130–1131. [PubMed] [Google Scholar]
  4. Bednar M., Smith B., Pinto A., Mullane K. M. Nafazatrom-induced salvage of ischemic myocardium in anesthetized dogs is mediated through inhibition of neutrophil function. Circ Res. 1985 Jul;57(1):131–141. doi: 10.1161/01.res.57.1.131. [DOI] [PubMed] [Google Scholar]
  5. Brown J. M., Grosso M. A., Terada L. S., Whitman G. J., Banerjee A., White C. W., Harken A. H., Repine J. E. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2516–2520. doi: 10.1073/pnas.86.7.2516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown J. M., White C. W., Terada L. S., Grosso M. A., Shanley P. F., Mulvin D. W., Banerjee A., Whitman G. J., Harken A. H., Repine J. E. Interleukin 1 pretreatment decreases ischemia/reperfusion injury. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5026–5030. doi: 10.1073/pnas.87.13.5026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Currie R. W. Effects of ischemia and perfusion temperature on the synthesis of stress-induced (heat shock) proteins in isolated and perfused rat hearts. J Mol Cell Cardiol. 1987 Aug;19(8):795–808. doi: 10.1016/s0022-2828(87)80390-5. [DOI] [PubMed] [Google Scholar]
  9. Currie R. W., Tanguay R. M. Analysis of RNA for transcripts for catalase and SP71 in rat hearts after in vivo hyperthermia. Biochem Cell Biol. 1991 May-Jun;69(5-6):375–382. doi: 10.1139/o91-057. [DOI] [PubMed] [Google Scholar]
  10. Das D. K., Engelman R. M., Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischaemia. Cardiovasc Res. 1993 Apr;27(4):578–584. doi: 10.1093/cvr/27.4.578. [DOI] [PubMed] [Google Scholar]
  11. Deutsch E., Berger M., Kussmaul W. G., Hirshfeld J. W., Jr, Herrmann H. C., Laskey W. K. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation. 1990 Dec;82(6):2044–2051. doi: 10.1161/01.cir.82.6.2044. [DOI] [PubMed] [Google Scholar]
  12. Dillmann W. H., Mehta H. B., Barrieux A., Guth B. D., Neeley W. E., Ross J., Jr Ischemia of the dog heart induces the appearance of a cardiac mRNA coding for a protein with migration characteristics similar to heat-shock/stress protein 71. Circ Res. 1986 Jul;59(1):110–114. doi: 10.1161/01.res.59.1.110. [DOI] [PubMed] [Google Scholar]
  13. Eddy L. J., Goeddel D. V., Wong G. H. Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun. 1992 Apr 30;184(2):1056–1059. doi: 10.1016/0006-291x(92)90698-k. [DOI] [PubMed] [Google Scholar]
  14. Fujii J., Taniguchi N. Phorbol ester induces manganese-superoxide dismutase in tumor necrosis factor-resistant cells. J Biol Chem. 1991 Dec 5;266(34):23142–23146. [PubMed] [Google Scholar]
  15. Ganote C. E., Armstrong S., Downey J. M. Adenosine and A1 selective agonists offer minimal protection against ischaemic injury to isolated rat cardiomyocytes. Cardiovasc Res. 1993 Sep;27(9):1670–1676. doi: 10.1093/cvr/27.9.1670. [DOI] [PubMed] [Google Scholar]
  16. Goshima K. Quabain-induced arrhythmias of single isolated myocardial cells and cell clusters cultured in vitro and their improvement by quinidine. J Mol Cell Cardiol. 1977 Jan;9(1):7–23. doi: 10.1016/0022-2828(77)90021-9. [DOI] [PubMed] [Google Scholar]
  17. Gupta M., Singal P. K. Higher antioxidative capacity during a chronic stable heart hypertrophy. Circ Res. 1989 Feb;64(2):398–406. doi: 10.1161/01.res.64.2.398. [DOI] [PubMed] [Google Scholar]
  18. Hassan H. M., Sun H. C. Regulatory roles of Fnr, Fur, and Arc in expression of manganese-containing superoxide dismutase in Escherichia coli. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3217–3221. doi: 10.1073/pnas.89.8.3217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hiraoka Y., Kishimoto C., Takada H., Kurokawa M., Ochiai H., Shiraki K., Sasayama S. Role of oxygen derived free radicals in the pathogenesis of coxsackievirus B3 myocarditis in mice. Cardiovasc Res. 1993 Jun;27(6):957–961. doi: 10.1093/cvr/27.6.957. [DOI] [PubMed] [Google Scholar]
  20. Ho Y. S., Crapo J. D. Nucleotide sequences of cDNAs coding for rat manganese-containing superoxide dismutase. Nucleic Acids Res. 1987 Dec 10;15(23):10070–10070. doi: 10.1093/nar/15.23.10070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ho Y. S., Howard A. J., Crapo J. D. Molecular structure of a functional rat gene for manganese-containing superoxide dismutase. Am J Respir Cell Mol Biol. 1991 Mar;4(3):278–286. doi: 10.1165/ajrcmb/4.3.278. [DOI] [PubMed] [Google Scholar]
  22. Hoshida S., Kuzuya T., Fuji H., Yamashita N., Oe H., Hori M., Suzuki K., Taniguchi N., Tada M. Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol. 1993 Jan;264(1 Pt 2):H33–H39. doi: 10.1152/ajpheart.1993.264.1.H33. [DOI] [PubMed] [Google Scholar]
  23. Hoshida S., Kuzuya T., Nishida M., Kim Y., Kitabatake A., Kamada T., Tada M. Attenuation of neutrophil function by inhibitors of arachidonate metabolism reduces the extent of canine myocardial infarction. Am J Cardiol. 1989 Mar 7;63(10):24E–28E. doi: 10.1016/0002-9149(89)90226-9. [DOI] [PubMed] [Google Scholar]
  24. Hutter M. M., Sievers R. E., Barbosa V., Wolfe C. L. Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation. 1994 Jan;89(1):355–360. doi: 10.1161/01.cir.89.1.355. [DOI] [PubMed] [Google Scholar]
  25. Iwaki K., Chi S. H., Dillmann W. H., Mestril R. Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation. 1993 Jun;87(6):2023–2032. doi: 10.1161/01.cir.87.6.2023. [DOI] [PubMed] [Google Scholar]
  26. Jolly S. R., Kane W. J., Bailie M. B., Abrams G. D., Lucchesi B. R. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res. 1984 Mar;54(3):277–285. doi: 10.1161/01.res.54.3.277. [DOI] [PubMed] [Google Scholar]
  27. Kantengwa S., Donati Y. R., Clerget M., Maridonneau-Parini I., Sinclair F., Mariéthoz E., Perin M., Rees A. D., Slosman D. O., Polla B. S. Heat shock proteins: an autoprotective mechanism for inflammatory cells? Semin Immunol. 1991 Jan;3(1):49–56. [PubMed] [Google Scholar]
  28. Karmazyn M., Mailer K., Currie R. W. Acquisition and decay of heat-shock-enhanced postischemic ventricular recovery. Am J Physiol. 1990 Aug;259(2 Pt 2):H424–H431. doi: 10.1152/ajpheart.1990.259.2.H424. [DOI] [PubMed] [Google Scholar]
  29. Kawaguchi T., Suzuki K., Matsuda Y., Nishiura T., Uda T., Ono M., Sekiya C., Ishikawa M., Iino S., Endo Y. Serum-manganese-superoxide dismutase: normal values and increased levels in patients with acute myocardial infarction and several malignant diseases determined by an enzyme-linked immunosorbent assay using a monoclonal antibody. J Immunol Methods. 1990 Mar 9;127(2):249–254. doi: 10.1016/0022-1759(90)90075-7. [DOI] [PubMed] [Google Scholar]
  30. Knowlton A. A., Brecher P., Apstein C. S. Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest. 1991 Jan;87(1):139–147. doi: 10.1172/JCI114963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kuzuya T., Hoshida S., Kim Y., Nishida M., Fuji H., Kitabatake A., Tada M., Kamada T. Detection of oxygen-derived free radical generation in the canine postischemic heart during late phase of reperfusion. Circ Res. 1990 Apr;66(4):1160–1165. doi: 10.1161/01.res.66.4.1160. [DOI] [PubMed] [Google Scholar]
  32. Kuzuya T., Hoshida S., Nishida M., Kim Y., Fuji H., Kitabatake A., Kamada T., Tada M. Role of free radicals and neutrophils in canine myocardial reperfusion injury: myocardial salvage by a novel free radical scavenger, 2-octadecylascorbic acid. Cardiovasc Res. 1989 Apr;23(4):323–330. doi: 10.1093/cvr/23.4.323. [DOI] [PubMed] [Google Scholar]
  33. Kuzuya T., Hoshida S., Yamashita N., Fuji H., Oe H., Hori M., Kamada T., Tada M. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993 Jun;72(6):1293–1299. doi: 10.1161/01.res.72.6.1293. [DOI] [PubMed] [Google Scholar]
  34. Liu G. S., Thornton J., Van Winkle D. M., Stanley A. W., Olsson R. A., Downey J. M. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991 Jul;84(1):350–356. doi: 10.1161/01.cir.84.1.350. [DOI] [PubMed] [Google Scholar]
  35. Marber M. S., Latchman D. S., Walker J. M., Yellon D. M. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993 Sep;88(3):1264–1272. doi: 10.1161/01.cir.88.3.1264. [DOI] [PubMed] [Google Scholar]
  36. Masuda A., Longo D. L., Kobayashi Y., Appella E., Oppenheim J. J., Matsushima K. Induction of mitochondrial manganese superoxide dismutase by interleukin 1. FASEB J. 1988 Dec;2(15):3087–3091. doi: 10.1096/fasebj.2.15.3263930. [DOI] [PubMed] [Google Scholar]
  37. Matsuda Y., Higashiyama S., Kijima Y., Suzuki K., Kawano K., Akiyama M., Kawata S., Tarui S., Deutsch H. F., Taniguchi N. Human liver manganese superoxide dismutase. Purification and crystallization, subunit association and sulfhydryl reactivity. Eur J Biochem. 1990 Dec 27;194(3):713–720. doi: 10.1111/j.1432-1033.1990.tb19461.x. [DOI] [PubMed] [Google Scholar]
  38. Murry C. E., Jennings R. B., Reimer K. A. New insights into potential mechanisms of ischemic preconditioning. Circulation. 1991 Jul;84(1):442–445. doi: 10.1161/01.cir.84.1.442. [DOI] [PubMed] [Google Scholar]
  39. Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986 Nov;74(5):1124–1136. doi: 10.1161/01.cir.74.5.1124. [DOI] [PubMed] [Google Scholar]
  40. Murry C. E., Richard V. J., Jennings R. B., Reimer K. A. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol. 1991 Mar;260(3 Pt 2):H796–H804. doi: 10.1152/ajpheart.1991.260.3.H796. [DOI] [PubMed] [Google Scholar]
  41. Murry C. E., Richard V. J., Reimer K. A., Jennings R. B. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990 Apr;66(4):913–931. doi: 10.1161/01.res.66.4.913. [DOI] [PubMed] [Google Scholar]
  42. Nishida M., Borzak S., Kraemer B., Navas J. P., Kelly R. A., Smith T. W., Marsh J. D. Role of cation gradients in hypercontracture of myocytes during simulated ischemia and reperfusion. Am J Physiol. 1993 Jun;264(6 Pt 2):H1896–H1906. doi: 10.1152/ajpheart.1993.264.6.H1896. [DOI] [PubMed] [Google Scholar]
  43. Oberley L. W., St Clair D. K., Autor A. P., Oberley T. D. Increase in manganese superoxide dismutase activity in the mouse heart after X-irradiation. Arch Biochem Biophys. 1987 Apr;254(1):69–80. doi: 10.1016/0003-9861(87)90082-8. [DOI] [PubMed] [Google Scholar]
  44. Shiki Y., Meyrick B. O., Brigham K. L., Burr I. M. Endotoxin increases superoxide dismutase in cultured bovine pulmonary endothelial cells. Am J Physiol. 1987 Apr;252(4 Pt 1):C436–C440. doi: 10.1152/ajpcell.1987.252.4.C436. [DOI] [PubMed] [Google Scholar]
  45. Stallings W. C., Pattridge K. A., Strong R. K., Ludwig M. L. The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4-A resolution. J Biol Chem. 1985 Dec 25;260(30):16424–16432. [PubMed] [Google Scholar]
  46. Thornton J., Striplin S., Liu G. S., Swafford A., Stanley A. W., Van Winkle D. M., Downey J. M. Inhibition of protein synthesis does not block myocardial protection afforded by preconditioning. Am J Physiol. 1990 Dec;259(6 Pt 2):H1822–H1825. doi: 10.1152/ajpheart.1990.259.6.H1822. [DOI] [PubMed] [Google Scholar]
  47. Tsan M. F., White J. E., Treanor C., Shaffer J. B. Molecular basis for tumor necrosis factor-induced increase in pulmonary superoxide dismutase activities. Am J Physiol. 1990 Dec;259(6 Pt 1):L506–L512. doi: 10.1152/ajplung.1990.259.6.L506. [DOI] [PubMed] [Google Scholar]
  48. Warner B. B., Burhans M. S., Clark J. C., Wispé J. R. Tumor necrosis factor-alpha increases Mn-SOD expression: protection against oxidant injury. Am J Physiol. 1991 Apr;260(4 Pt 1):L296–L301. doi: 10.1152/ajplung.1991.260.4.L296. [DOI] [PubMed] [Google Scholar]
  49. Wispé J. R., Clark J. C., Burhans M. S., Kropp K. E., Korfhagen T. R., Whitsett J. A. Synthesis and processing of the precursor for human mangano-superoxide dismutase. Biochim Biophys Acta. 1989 Jan 19;994(1):30–36. doi: 10.1016/0167-4838(89)90058-7. [DOI] [PubMed] [Google Scholar]
  50. Wong G. H., Elwell J. H., Oberley L. W., Goeddel D. V. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell. 1989 Sep 8;58(5):923–931. doi: 10.1016/0092-8674(89)90944-6. [DOI] [PubMed] [Google Scholar]
  51. Wong G. H., Goeddel D. V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science. 1988 Nov 11;242(4880):941–944. doi: 10.1126/science.3263703. [DOI] [PubMed] [Google Scholar]
  52. Zweier J. L., Flaherty J. T., Weisfeldt M. L. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1404–1407. doi: 10.1073/pnas.84.5.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES