Abstract
Nitric oxide (NO) is a potent endogenous vasodilator. Its role in the normal and stressed pulmonary circulation is unclear. To better understand the importance of endogenous NO in normal physiological responses, we studied the effects of altered NO availability on the change in pulmonary vascular tone that accompanies exercise. In paired studies we measured blood flow and pressures in the pulmonary circulation at rest and during treadmill exercise at a speed of 4 mph with and without (a) N omega-nitro-L-arginine, 20 mg/kg intravenously, a selective inhibitor of NO synthase; (b) L-arginine, 200 mg/kg intravenously, substrate for NO synthase; (c) combination of the inhibitor and substrate; and (d) inhalation of NO > 30 ppm, to determine if endogenous release of NO elicits maximal vasodilation. In addition, we sought to determine the site of NO effect in the pulmonary circulation by preconstriction with either U-44619 or hypoxia (fraction of inspired O2 = 0.12) using a distal wedged pulmonary catheter technique. NO synthase inhibition raised pulmonary vascular tone equally at rest and exercise. L-Arginine reversed the effects of NO synthase inhibition but had no independent effect. NO inhalation did not reduce pulmonary vascular tone at rest or enhance the usual reduction in pulmonary vascular resistance with exercise. The effect of NO synthase inhibition was in pulmonary vessels upstream from small veins, suggesting that endogenous NO dilates primarily small arteries and veins at rest. We conclude that, in sheep, endogenous NO has a basal vasodilator function that persists during, but is not enhanced by, exercise.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abman S. H., Chatfield B. A., Hall S. L., McMurtry I. F. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol. 1990 Dec;259(6 Pt 2):H1921–H1927. doi: 10.1152/ajpheart.1990.259.6.H1921. [DOI] [PubMed] [Google Scholar]
- Adnot S., Raffestin B., Eddahibi S., Braquet P., Chabrier P. E. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest. 1991 Jan;87(1):155–162. doi: 10.1172/JCI114965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buga G. M., Gold M. E., Fukuto J. M., Ignarro L. J. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension. 1991 Feb;17(2):187–193. doi: 10.1161/01.hyp.17.2.187. [DOI] [PubMed] [Google Scholar]
- Cornfield D. N., Chatfield B. A., McQueston J. A., McMurtry I. F., Abman S. H. Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in ovine fetus. Am J Physiol. 1992 May;262(5 Pt 2):H1474–H1481. doi: 10.1152/ajpheart.1992.262.5.H1474. [DOI] [PubMed] [Google Scholar]
- Dinh-Xuan A. T., Higenbottam T. W., Clelland C. A., Pepke-Zaba J., Cremona G., Butt A. Y., Large S. R., Wells F. C., Wallwork J. Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med. 1991 May 30;324(22):1539–1547. doi: 10.1056/NEJM199105303242203. [DOI] [PubMed] [Google Scholar]
- Fineman J. R., Heymann M. A., Soifer S. J. N omega-nitro-L-arginine attenuates endothelium-dependent pulmonary vasodilation in lambs. Am J Physiol. 1991 Apr;260(4 Pt 2):H1299–H1306. doi: 10.1152/ajpheart.1991.260.4.H1299. [DOI] [PubMed] [Google Scholar]
- Frangos J. A., Eskin S. G., McIntire L. V., Ives C. L. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985 Mar 22;227(4693):1477–1479. doi: 10.1126/science.3883488. [DOI] [PubMed] [Google Scholar]
- Frostell C., Fratacci M. D., Wain J. C., Jones R., Zapol W. M. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991 Jun;83(6):2038–2047. doi: 10.1161/01.cir.83.6.2038. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Chaudhuri G. EDRF generation and release from perfused bovine pulmonary artery and vein. Eur J Pharmacol. 1988 Apr 27;149(1-2):79–88. doi: 10.1016/0014-2999(88)90045-3. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Byrns R. E., Buga G. M., Wood K. S. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res. 1987 Dec;61(6):866–879. doi: 10.1161/01.res.61.6.866. [DOI] [PubMed] [Google Scholar]
- Kane D. W., Tesauro T., Koizumi T., Gupta R., Newman J. H. Exercise-induced pulmonary vasoconstriction during combined blockade of nitric oxide synthase and beta adrenergic receptors. J Clin Invest. 1994 Feb;93(2):677–683. doi: 10.1172/JCI117020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kane D. W., Tesauro T., Newman J. H. Adrenergic modulation of the pulmonary circulation during strenuous exercise in sheep. Am Rev Respir Dis. 1993 May;147(5):1233–1238. doi: 10.1164/ajrccm/147.5.1233. [DOI] [PubMed] [Google Scholar]
- Lindenfeld J., Reeves J. T., Horwitz L. D. Low exercise pulmonary resistance is not dependent on vasodilator prostaglandins. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):558–561. doi: 10.1152/jappl.1983.55.2.558. [DOI] [PubMed] [Google Scholar]
- Liu S. F., Crawley D. E., Barnes P. J., Evans T. W. Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. Am Rev Respir Dis. 1991 Jan;143(1):32–37. doi: 10.1164/ajrccm/143.1.32. [DOI] [PubMed] [Google Scholar]
- McMahon T. J., Hood J. S., Bellan J. A., Kadowitz P. J. N omega-nitro-L-arginine methyl ester selectively inhibits pulmonary vasodilator responses to acetylcholine and bradykinin. J Appl Physiol (1985) 1991 Nov;71(5):2026–2031. doi: 10.1152/jappl.1991.71.5.2026. [DOI] [PubMed] [Google Scholar]
- Newman J. H., Butka B. J., Brigham K. L. Thromboxane A2 and prostacyclin do not modulate pulmonary hemodynamics during exercise in sheep. J Appl Physiol (1985) 1986 Nov;61(5):1706–1711. doi: 10.1152/jappl.1986.61.5.1706. [DOI] [PubMed] [Google Scholar]
- Newman J. H., Butka B. J., Parker R. E., Roselli R. J. Effect of progressive exercise on lung fluid balance in sheep. J Appl Physiol (1985) 1988 May;64(5):2125–2131. doi: 10.1152/jappl.1988.64.5.2125. [DOI] [PubMed] [Google Scholar]
- Newman J. H., Cochran C. P., Roselli R. J., Parker R. E., King L. S. Pressure and flow changes in the pulmonary circulation in exercising sheep: evidence for elevated microvascular pressure. Am Rev Respir Dis. 1993 Apr;147(4):921–926. doi: 10.1164/ajrccm/147.4.921. [DOI] [PubMed] [Google Scholar]
- Nishiwaki K., Nyhan D. P., Rock P., Desai P. M., Peterson W. P., Pribble C. G., Murray P. A. N omega-nitro-L-arginine and pulmonary vascular pressure-flow relationship in conscious dogs. Am J Physiol. 1992 May;262(5 Pt 2):H1331–H1337. doi: 10.1152/ajpheart.1992.262.5.H1331. [DOI] [PubMed] [Google Scholar]
- Oka M., Hasunuma K., Webb S. A., Stelzner T. J., Rodman D. M., McMurtry I. F. EDRF suppresses an unidentified vasoconstrictor mechanism in hypertensive rat lungs. Am J Physiol. 1993 Jun;264(6 Pt 1):L587–L597. doi: 10.1152/ajplung.1993.264.6.L587. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
- Parker R. E., Brigham K. L. Effects of endotoxemia on pulmonary vascular resistances in unanesthetized sheep. J Appl Physiol (1985) 1987 Sep;63(3):1058–1062. doi: 10.1152/jappl.1987.63.3.1058. [DOI] [PubMed] [Google Scholar]
- Rogers T. K., Howard P. Pulmonary hemodynamics and physical training in patients with chronic obstructive pulmonary disease. Chest. 1992 May;101(5 Suppl):289S–292S. doi: 10.1378/chest.101.5_supplement.289s. [DOI] [PubMed] [Google Scholar]
- Rubanyi G. M., Romero J. C., Vanhoutte P. M. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986 Jun;250(6 Pt 2):H1145–H1149. doi: 10.1152/ajpheart.1986.250.6.H1145. [DOI] [PubMed] [Google Scholar]
- Russ R. D., Walker B. R. Maintained endothelium-dependent pulmonary vasodilation following chronic hypoxia in the rat. J Appl Physiol (1985) 1993 Jan;74(1):339–344. doi: 10.1152/jappl.1993.74.1.339. [DOI] [PubMed] [Google Scholar]
- Sprague R. S., Thiemermann C., Vane J. R. Endogenous endothelium-derived relaxing factor opposes hypoxic pulmonary vasoconstriction and supports blood flow to hypoxic alveoli in anesthetized rabbits. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8711–8715. doi: 10.1073/pnas.89.18.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zidulka A., Hakim T. S. Wedge pressure in large vs. small pulmonary arteries to detect pulmonary venoconstriction. J Appl Physiol (1985) 1985 Oct;59(4):1329–1332. doi: 10.1152/jappl.1985.59.4.1329. [DOI] [PubMed] [Google Scholar]
- van Grondelle A., Worthen G. S., Ellis D., Mathias M. M., Murphy R. C., Strife R. J., Reeves J. T., Voelkel N. F. Altering hydrodynamic variables influences PGI2 production by isolated lungs and endothelial cells. J Appl Physiol Respir Environ Exerc Physiol. 1984 Aug;57(2):388–395. doi: 10.1152/jappl.1984.57.2.388. [DOI] [PubMed] [Google Scholar]
