Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Dec;94(6):2301–2306. doi: 10.1172/JCI117594

Cationic protein-induced sensory nerve activation: role of substance P in airway hyperresponsiveness and plasma protein extravasation.

A J Coyle 1, F Perretti 1, S Manzini 1, C G Irvin 1
PMCID: PMC330058  PMID: 7527430

Abstract

We have previously reported that human eosinophil granule major basic protein and synthetic cationic proteins such as poly-L-arginine and poly-L-lysine, can increase airway responsiveness in vivo. In the present study, we have investigated whether activation of sensory C-fibers is important in this phenomenon. Dose-response curves to methacholine were constructed before and 1 h after intratracheal instillation of poly-L-lysine in anaesthetized spontaneously breathing rats, and the concentration of methacholine required to induce a doubling in total lung resistance was calculated. Poly-L-lysine induced a fivefold increase in airway responsiveness, which was inhibited by neonatal capsaicin treatment and potentiated by phosphoramidon (100 micrograms/ml). Furthermore, pretreatment with either CP, 96-345, or RP-67580 two selective NK-1 receptor antagonists inhibited poly-L-lysine-induced airway hyperresponsiveness and plasma protein extravasation. In vitro, cationic proteins stimulated the release of calcitonin gene-related peptide-like immunoreactivity from perfused slices of the main bronchi. Our results demonstrate that cationic proteins can activate sensory C-fibers in the airways, an effect which is important in the subsequent development of airway hyperresponsiveness and plasma protein extravasation. Cationic proteins may therefore function as a link between inflammatory cell accumulation and sensory nerve activation.

Full text

PDF
2301

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman S. J., Loegering D. A., Venge P., Olsson I., Harley J. B., Fauci A. S., Gleich G. J. Distinctive cationic proteins of the human eosinophil granule: major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin. J Immunol. 1983 Dec;131(6):2977–2982. [PubMed] [Google Scholar]
  2. Barnes P. J. New concepts in the pathogenesis of bronchial hyperresponsiveness and asthma. J Allergy Clin Immunol. 1989 Jun;83(6):1013–1026. doi: 10.1016/0091-6749(89)90441-7. [DOI] [PubMed] [Google Scholar]
  3. Belvisi M. G., Rogers D. F., Barnes P. J. Neurogenic plasma extravasation: inhibition by morphine in guinea pig airways in vivo. J Appl Physiol (1985) 1989 Jan;66(1):268–272. doi: 10.1152/jappl.1989.66.1.268. [DOI] [PubMed] [Google Scholar]
  4. Bertrand C., Nadel J. A., Yamawaki I., Geppetti P. Role of kinins in the vascular extravasation evoked by antigen and mediated by tachykinins in guinea pig trachea. J Immunol. 1993 Nov 1;151(9):4902–4907. [PubMed] [Google Scholar]
  5. Borson D. B., Brokaw J. J., Sekizawa K., McDonald D. M., Nadel J. A. Neutral endopeptidase and neurogenic inflammation in rats with respiratory infections. J Appl Physiol (1985) 1989 Jun;66(6):2653–2658. doi: 10.1152/jappl.1989.66.6.2653. [DOI] [PubMed] [Google Scholar]
  6. Coyle A. J., Ackerman S. J., Irvin C. G. Cationic proteins induce airway hyperresponsiveness dependent on charge interactions. Am Rev Respir Dis. 1993 Apr;147(4):896–900. doi: 10.1164/ajrccm/147.4.896. [DOI] [PubMed] [Google Scholar]
  7. Coyle A. J., Mitzner W., Irvin C. G. Cationic proteins alter smooth muscle function by an epithelium-dependent mechanism. J Appl Physiol (1985) 1993 Apr;74(4):1761–1768. doi: 10.1152/jappl.1993.74.4.1761. [DOI] [PubMed] [Google Scholar]
  8. Coyle A. J., Urwin S. C., Page C. P., Touvay C., Villain B., Braquet P. The effect of the selective PAF antagonist BN 52021 on PAF- and antigen-induced bronchial hyper-reactivity and eosinophil accumulation. Eur J Pharmacol. 1988 Mar 22;148(1):51–58. doi: 10.1016/0014-2999(88)90453-0. [DOI] [PubMed] [Google Scholar]
  9. Dusser D. J., Umeno E., Graf P. D., Djokic T., Borson D. B., Nadel J. A. Airway neutral endopeptidase-like enzyme modulates tachykinin-induced bronchoconstriction in vivo. J Appl Physiol (1985) 1988 Dec;65(6):2585–2591. doi: 10.1152/jappl.1988.65.6.2585. [DOI] [PubMed] [Google Scholar]
  10. Garret C., Carruette A., Fardin V., Moussaoui S., Peyronel J. F., Blanchard J. C., Laduron P. M. Pharmacological properties of a potent and selective nonpeptide substance P antagonist. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10208–10212. doi: 10.1073/pnas.88.22.10208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geppetti P., Frilli S., Renzi D., Santicioli P., Maggi C. A., Theodorsson E., Fanciullacci M. Distribution of calcitonin gene-related peptide-like immunoreactivity in various rat tissues: correlation with substance P and other tachykinins and sensitivity to capsaicin. Regul Pept. 1988 Dec;23(3):289–298. doi: 10.1016/0167-0115(88)90229-7. [DOI] [PubMed] [Google Scholar]
  12. Gundel R. H., Letts L. G., Gleich G. J. Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J Clin Invest. 1991 Apr;87(4):1470–1473. doi: 10.1172/JCI115155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kröll F., Karlsson J. A., Lundberg J. M., Persson C. G. Capsaicin-induced bronchoconstriction and neuropeptide release in guinea pig perfused lungs. J Appl Physiol (1985) 1990 Apr;68(4):1679–1687. doi: 10.1152/jappl.1990.68.4.1679. [DOI] [PubMed] [Google Scholar]
  14. Kuo H. P., Rohde J. A., Tokuyama K., Barnes P. J., Rogers D. F. Capsaicin and sensory neuropeptide stimulation of goblet cell secretion in guinea-pig trachea. J Physiol. 1990 Dec;431:629–641. doi: 10.1113/jphysiol.1990.sp018351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lundberg J. M., Brodin E., Saria A. Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs. Acta Physiol Scand. 1983 Nov;119(3):243–252. doi: 10.1111/j.1748-1716.1983.tb07334.x. [DOI] [PubMed] [Google Scholar]
  16. Lundberg J. M., Franco-Cereceda A., Hua X., Hökfelt T., Fischer J. A. Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur J Pharmacol. 1985 Feb 5;108(3):315–319. doi: 10.1016/0014-2999(85)90456-x. [DOI] [PubMed] [Google Scholar]
  17. Lundberg J. M., Saria A. Capsaicin-induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants. Nature. 1983 Mar 17;302(5905):251–253. doi: 10.1038/302251a0. [DOI] [PubMed] [Google Scholar]
  18. Maggi C. A., Patacchini R., Santicioli P., Giuliani S., Del Bianco E., Geppetti P., Meli A. The 'efferent' function of capsaicin-sensitive nerves: ruthenium red discriminates between different mechanisms of activation. Eur J Pharmacol. 1989 Nov 7;170(3):167–177. doi: 10.1016/0014-2999(89)90537-2. [DOI] [PubMed] [Google Scholar]
  19. Martins M. A., Shore S. A., Gerard N. P., Gerard C., Drazen J. M. Peptidase modulation of the pulmonary effects of tachykinins in tracheal superfused guinea pig lungs. J Clin Invest. 1990 Jan;85(1):170–176. doi: 10.1172/JCI114408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martling C. R. Sensory nerves containing tachykinins and CGRP in the lower airways. Functional implications for bronchoconstriction, vasodilatation and protein extravasation. Acta Physiol Scand Suppl. 1987;563:1–57. [PubMed] [Google Scholar]
  21. Matsuse T., Thomson R. J., Chen X. R., Salari H., Schellenberg R. R. Capsaicin inhibits airway hyperresponsiveness but not lipoxygenase activity or eosinophilia after repeated aerosolized antigen in guinea pigs. Am Rev Respir Dis. 1991 Aug;144(2):368–372. doi: 10.1164/ajrccm/144.2.368. [DOI] [PubMed] [Google Scholar]
  22. McKay K. O., Black J. L., Armour C. L. Phosphoramidon potentiates the contractile response to endothelin-3, but not endothelin-1 in isolated airway tissue. Br J Pharmacol. 1992 Apr;105(4):929–932. doi: 10.1111/j.1476-5381.1992.tb09080.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meini S., Evangelista S., Geppetti P., Szallasi A., Blumberg P. M., Manzini S. Pharmacologic and neurochemical evidence for the activation of capsaicin-sensitive sensory nerves by lipoxin A4 in guinea pig bronchus. Am Rev Respir Dis. 1992 Oct;146(4):930–934. doi: 10.1164/ajrccm/146.4.930. [DOI] [PubMed] [Google Scholar]
  24. Perretti F., Manzini S. Activation of capsaicin-sensitive sensory fibers modulates PAF-induced bronchial hyperresponsiveness in anesthetized guinea pigs. Am Rev Respir Dis. 1993 Oct;148(4 Pt 1):927–931. doi: 10.1164/ajrccm/148.4_Pt_1.927. [DOI] [PubMed] [Google Scholar]
  25. Saria A., Martling C. R., Yan Z., Theodorsson-Norheim E., Gamse R., Lundberg J. M. Release of multiple tachykinins from capsaicin-sensitive sensory nerves in the lung by bradykinin, histamine, dimethylphenyl piperazinium, and vagal nerve stimulation. Am Rev Respir Dis. 1988 Jun;137(6):1330–1335. doi: 10.1164/ajrccm/137.6.1330. [DOI] [PubMed] [Google Scholar]
  26. Sertl K., Wiedermann C. J., Kowalski M. L., Hurtado S., Plutchok J., Linnoila I., Pert C. B., Kaliner M. A. Substance P: the relationship between receptor distribution in rat lung and the capacity of substance P to stimulate vascular permeability. Am Rev Respir Dis. 1988 Jul;138(1):151–159. doi: 10.1164/ajrccm/138.1.151. [DOI] [PubMed] [Google Scholar]
  27. Sheppard D., Scypinski L. A tachykinin receptor antagonist inhibits and an inhibitor of tachykinin metabolism potentiates toluene diisocyanate-induced airway hyperresponsiveness in guinea pigs. Am Rev Respir Dis. 1988 Sep;138(3):547–551. doi: 10.1164/ajrccm/138.3.547. [DOI] [PubMed] [Google Scholar]
  28. Shore S. A., Drazen J. M. Relative bronchoconstrictor activity of neurokinin A and neurokinin A fragments in guinea pigs. J Appl Physiol (1985) 1991 Aug;71(2):452–457. doi: 10.1152/jappl.1991.71.2.452. [DOI] [PubMed] [Google Scholar]
  29. Snider R. M., Constantine J. W., Lowe J. A., 3rd, Longo K. P., Lebel W. S., Woody H. A., Drozda S. E., Desai M. C., Vinick F. J., Spencer R. W. A potent nonpeptide antagonist of the substance P (NK1) receptor. Science. 1991 Jan 25;251(4992):435–437. doi: 10.1126/science.1703323. [DOI] [PubMed] [Google Scholar]
  30. Spina D., McKenniff M. G., Coyle A. J., Seeds E. A., Tramontana M., Perretti F., Manzini S., Page C. P. Effect of capsaicin on PAF-induced bronchial hyperresponsiveness and pulmonary cell accumulation in the rabbit. Br J Pharmacol. 1991 May;103(1):1268–1274. doi: 10.1111/j.1476-5381.1991.tb12335.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stimler-Gerard N. P. Neutral endopeptidase-like enzyme controls the contractile activity of substance P in guinea pig lung. J Clin Invest. 1987 Jun;79(6):1819–1825. doi: 10.1172/JCI113023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tanaka D. T., Grunstein M. M. Effect of substance P on neurally mediated contraction of rabbit airway smooth muscle. J Appl Physiol (1985) 1986 Feb;60(2):458–463. doi: 10.1152/jappl.1986.60.2.458. [DOI] [PubMed] [Google Scholar]
  33. Uchida D. A., Ackerman S. J., Coyle A. J., Larsen G. L., Weller P. F., Freed J., Irvin C. G. The effect of human eosinophil granule major basic protein on airway responsiveness in the rat in vivo. A comparison with polycations. Am Rev Respir Dis. 1993 Apr;147(4):982–988. doi: 10.1164/ajrccm/147.4.982. [DOI] [PubMed] [Google Scholar]
  34. Wardlaw A. J., Dunnette S., Gleich G. J., Collins J. V., Kay A. B. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis. 1988 Jan;137(1):62–69. doi: 10.1164/ajrccm/137.1.62. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES