Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Dec;94(6):2392–2396. doi: 10.1172/JCI117605

Gadolinium inhibits mechanoelectrical transduction in rabbit carotid baroreceptors. Implication of stretch-activated channels.

G Hajduczok 1, M W Chapleau 1, R J Ferlic 1, H Z Mao 1, F M Abboud 1
PMCID: PMC330069  PMID: 7527431

Abstract

Gadolinium (Gd3+) has been shown to prevent mechanoelectrical transduction believed to be mediated through stretch-activated channels. We investigated the possible role of Gd(3+)-sensitive channels in mediating baroreceptor activity in the carotid sinus of rabbits. Baroreceptor activity induced by a ramp increase of carotid sinus pressure was reduced significantly during exposure to Gd3+. The inhibition was dose-related and reversible, and was not associated with alteration of carotid sinus wall mechanics as the pressure-strain relationship was unaffected. Veratrine triggered action potentials from single- and multiple-baroreceptor fibers when their response to pressure was inhibited by Gd3+. This suggests that the effect of Gd3+ on baroreceptors in the isolated carotid sinus was specific to their mechanical activation. The results suggest that stretch-activated ion channels sensitive to Gd3+ may be the mechanoelectrical transducers of rabbit carotid sinus baroreceptors.

Full text

PDF
2392

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andresen M. C., Kunze D. L. Ionic sensitivity of baroreceptors. Circ Res. 1987 Oct;61(4 Pt 2):I66–I71. [PubMed] [Google Scholar]
  2. Andresen M. C., Yang M. Gadolinium and mechanotransduction of rat aortic baroreceptors. Am J Physiol. 1992 May;262(5 Pt 2):H1415–H1421. doi: 10.1152/ajpheart.1992.262.5.H1415. [DOI] [PubMed] [Google Scholar]
  3. Barnes S., Hille B. Veratridine modifies open sodium channels. J Gen Physiol. 1988 Mar;91(3):421–443. doi: 10.1085/jgp.91.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biagi B. A., Enyeart J. J. Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. Am J Physiol. 1990 Sep;259(3 Pt 1):C515–C520. doi: 10.1152/ajpcell.1990.259.3.C515. [DOI] [PubMed] [Google Scholar]
  5. Brehm P., Kullberg R., Moody-Corbett F. Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J Physiol. 1984 May;350:631–648. doi: 10.1113/jphysiol.1984.sp015222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown A. M. Receptors under pressure. An update on baroreceptors. Circ Res. 1980 Jan;46(1):1–10. doi: 10.1161/01.res.46.1.1. [DOI] [PubMed] [Google Scholar]
  7. Docherty R. J. Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma x glioma hybrid (NG108-15) cells. J Physiol. 1988 Apr;398:33–47. doi: 10.1113/jphysiol.1988.sp017027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edwards C., Ottoson D., Rydqvist B., Swerup C. The permeability of the transducer membrane of the crayfish stretch receptor to calcium and other divalent cations. Neuroscience. 1981;6(7):1455–1460. doi: 10.1016/0306-4522(81)90200-1. [DOI] [PubMed] [Google Scholar]
  9. Erxleben C. Stretch-activated current through single ion channels in the abdominal stretch receptor organ of the crayfish. J Gen Physiol. 1989 Dec;94(6):1071–1083. doi: 10.1085/jgp.94.6.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984 Jul;352:685–701. doi: 10.1113/jphysiol.1984.sp015317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gustin M. C., Zhou X. L., Martinac B., Kung C. A mechanosensitive ion channel in the yeast plasma membrane. Science. 1988 Nov 4;242(4879):762–765. doi: 10.1126/science.2460920. [DOI] [PubMed] [Google Scholar]
  12. Hajduczok G., Chapleau M. W., Abboud F. M. Rheoreceptors in the carotid sinus of dog. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7399–7403. doi: 10.1073/pnas.85.19.7399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hansen D. E., Borganelli M., Stacy G. P., Jr, Taylor L. K. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ Res. 1991 Sep;69(3):820–831. doi: 10.1161/01.res.69.3.820. [DOI] [PubMed] [Google Scholar]
  14. Heesch C. M., Miller B. M., Thames M. D., Abboud F. M. Effects of calcium channel blockers on isolated carotid baroreceptors and baroreflex. Am J Physiol. 1983 Oct;245(4):H653–H661. doi: 10.1152/ajpheart.1983.245.4.H653. [DOI] [PubMed] [Google Scholar]
  15. Kilian P. L., Schacht J. Sound stimulates labeling of polyphosphoinositides in the auditory organ of the noctuid moth. J Neurochem. 1980 Mar;34(3):709–712. doi: 10.1111/j.1471-4159.1980.tb11201.x. [DOI] [PubMed] [Google Scholar]
  16. Kunze D. L., Andresen M. C., Torres L. A. Do calcium antagonists act directly on calcium channels to alter baroreceptor function? J Pharmacol Exp Ther. 1986 Nov;239(2):303–310. [PubMed] [Google Scholar]
  17. Morris C. E., Horn R. Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science. 1991 Mar 8;251(4998):1246–1249. doi: 10.1126/science.1706535. [DOI] [PubMed] [Google Scholar]
  18. Morris C. E. Mechanosensitive ion channels. J Membr Biol. 1990 Feb;113(2):93–107. doi: 10.1007/BF01872883. [DOI] [PubMed] [Google Scholar]
  19. Naruse K., Sokabe M. Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol. 1993 Apr;264(4 Pt 1):C1037–C1044. doi: 10.1152/ajpcell.1993.264.4.C1037. [DOI] [PubMed] [Google Scholar]
  20. Ruknudin A., Sachs F., Bustamante J. O. Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol. 1993 Mar;264(3 Pt 2):H960–H972. doi: 10.1152/ajpheart.1993.264.3.H960. [DOI] [PubMed] [Google Scholar]
  21. Sigurdson W., Ruknudin A., Sachs F. Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol. 1992 Apr;262(4 Pt 2):H1110–H1115. doi: 10.1152/ajpheart.1992.262.4.H1110. [DOI] [PubMed] [Google Scholar]
  22. Thoren P., Andresen M. C., Brown A. M. Effects of changes in extracellular ionic concentrations on aortic baroreceptors with nonmyelinated afferent fibers. Circ Res. 1982 Mar;50(3):413–418. doi: 10.1161/01.res.50.3.413. [DOI] [PubMed] [Google Scholar]
  23. Ubl J., Murer H., Kolb H. A. Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells. J Membr Biol. 1988 Sep;104(3):223–232. doi: 10.1007/BF01872324. [DOI] [PubMed] [Google Scholar]
  24. Wang G., Dugas M., Armah B. I., Honerjäger P. Sodium channel comodification with full activator reveals veratridine reaction dynamics. Mol Pharmacol. 1990 Feb;37(2):144–148. [PubMed] [Google Scholar]
  25. Wellhöner H. H. The action of veratridine on the membrane potential of the crayfish stretch receptor neurone. Naunyn Schmiedebergs Arch Pharmakol. 1970;267(2):185–188. doi: 10.1007/BF00999401. [DOI] [PubMed] [Google Scholar]
  26. Xie P. L., Chapleau M. W., McDowell T. S., Hajduczok G., Abboud F. M. Mechanism of decreased baroreceptor activity in chronic hypertensive rabbits. Role of endogenous prostanoids. J Clin Invest. 1990 Aug;86(2):625–630. doi: 10.1172/JCI114754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yang X. C., Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989 Feb 24;243(4894 Pt 1):1068–1071. doi: 10.1126/science.2466333. [DOI] [PubMed] [Google Scholar]
  28. Zhou X. L., Stumpf M. A., Hoch H. C., Kung C. A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science. 1991 Sep 20;253(5026):1415–1417. doi: 10.1126/science.1716786. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES