Abstract
Suppressor cells infected with bacteriophage f1 yield phage encoded gene IV transcripts longer than those present in the supo host and identical to those found in a rho- host. However, such longer transcripts do not appear in the suppressor-infected cell when, by changing the translation frame of gene IV, the ribosome is not allowed to proceed to the end of the gene IV message and thus to reach the rho dependent transcription terminator f1 TIV. This suggests that ribosome movement beyond the natural gene IV stop codon disturbs the activity of that termination signal. In contrast to the rho- behaviour, the suppressor does not accumulate high levels of gene IV messages indicating that the accumulation occurring in the rho- mutant may not be a primary effect of the readthrough per se.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alifano P., Ciampi M. S., Nappo A. G., Bruni C. B., Carlomagno M. S. In vivo analysis of the mechanisms responsible for strong transcriptional polarity in a "sense" mutant within an intercistronic region. Cell. 1988 Oct 21;55(2):351–360. doi: 10.1016/0092-8674(88)90058-x. [DOI] [PubMed] [Google Scholar]
- Bailey J. M., Davidson N. Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Anal Biochem. 1976 Jan;70(1):75–85. doi: 10.1016/s0003-2697(76)80049-8. [DOI] [PubMed] [Google Scholar]
- Brennan C. A., Dombroski A. J., Platt T. Transcription termination factor rho is an RNA-DNA helicase. Cell. 1987 Mar 27;48(6):945–952. doi: 10.1016/0092-8674(87)90703-3. [DOI] [PubMed] [Google Scholar]
- Chen C. Y., Galluppi G. R., Richardson J. P. Transcription termination at lambda tR1 is mediated by interaction of rho with specific single-stranded domains near the 3' end of cro mRNA. Cell. 1986 Sep 26;46(7):1023–1028. doi: 10.1016/0092-8674(86)90701-4. [DOI] [PubMed] [Google Scholar]
- Ciampi M. S., Roth J. R. Polarity effects in the hisG gene of salmonella require a site within the coding sequence. Genetics. 1988 Feb;118(2):193–202. doi: 10.1093/genetics/118.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enea V., Zinder N. D. A delection mutant of bacteriophage f1 containing no intact cistrons. Virology. 1975 Nov;68(1):105–114. doi: 10.1016/0042-6822(75)90152-x. [DOI] [PubMed] [Google Scholar]
- Hill D. F., Petersen G. B. Nucleotide sequence of bacteriophage f1 DNA. J Virol. 1982 Oct;44(1):32–46. doi: 10.1128/jvi.44.1.32-46.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes W. M., Platt T., Rosenberg M. Termination of transcription in E. coli. Cell. 1983 Apr;32(4):1029–1032. doi: 10.1016/0092-8674(83)90287-8. [DOI] [PubMed] [Google Scholar]
- Hyman H. C., Honigman A. Transcription termination and processing sites in the bacteriophage lambda pL operon. J Mol Biol. 1986 May 5;189(1):131–141. doi: 10.1016/0022-2836(86)90386-4. [DOI] [PubMed] [Google Scholar]
- Jacob E., Hofschneider P. H. Replication of the single-stranded DNA bacteriophage M13: messenger RNA synthesis directed by M13 replicative form DNA. J Mol Biol. 1969 Dec 14;46(2):359–363. doi: 10.1016/0022-2836(69)90429-x. [DOI] [PubMed] [Google Scholar]
- Kolter R., Yanofsky C. Attenuation in amino acid biosynthetic operons. Annu Rev Genet. 1982;16:113–134. doi: 10.1146/annurev.ge.16.120182.000553. [DOI] [PubMed] [Google Scholar]
- La Farina M., Model P. Transcription in bacteriophage f1-infected Escherichia coli. Messenger populations in the infected cell. J Mol Biol. 1983 Mar 5;164(3):377–393. doi: 10.1016/0022-2836(83)90057-8. [DOI] [PubMed] [Google Scholar]
- La Farina M., Vitale M., Enea V. Transcription in bacteriophage f1-infected Escherichia coli: RNA synthesized on DNA of deletion mutant PII shows the existence of a two-site terminator. Mol Gen Genet. 1984;195(3):411–417. doi: 10.1007/BF00341441. [DOI] [PubMed] [Google Scholar]
- Lau L. F., Roberts J. W. Rho-dependent transcription termination at lambda R1 requires upstream sequences. J Biol Chem. 1985 Jan 10;260(1):574–584. [PubMed] [Google Scholar]
- Lau L. F., Roberts J. W., Wu R. Transcription terminates at lambda tR1 in three clusters. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6171–6175. doi: 10.1073/pnas.79.20.6171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyons L. B., Zinder N. D. The genetic map of the filamentous bacteriophage f1. Virology. 1972 Jul;49(1):45–60. doi: 10.1016/s0042-6822(72)80006-0. [DOI] [PubMed] [Google Scholar]
- Morgan W. D., Bear D. G., Litchman B. L., von Hippel P. H. RNA sequence and secondary structure requirements for rho-dependent transcription termination. Nucleic Acids Res. 1985 May 24;13(10):3739–3754. doi: 10.1093/nar/13.10.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan W. D., Bear D. G., von Hippel P. H. Rho-dependent termination of transcription. I. Identification and characterization of termination sites for transcription from the bacteriophage lambda PR promoter. J Biol Chem. 1983 Aug 10;258(15):9553–9564. [PubMed] [Google Scholar]
- Morgan W. D., Bear D. G., von Hippel P. H. Rho-dependent termination of transcription. II. Kinetics of mRNA elongation during transcription from the bacteriophage lambda PR promoter. J Biol Chem. 1983 Aug 10;258(15):9565–9574. [PubMed] [Google Scholar]
- Moses P. B., Model P. A rho-dependent transcription termination signal in bacteriophage f1. J Mol Biol. 1984 Jan 5;172(1):1–22. doi: 10.1016/0022-2836(84)90411-x. [DOI] [PubMed] [Google Scholar]
- Platt T. Transcription termination and the regulation of gene expression. Annu Rev Biochem. 1986;55:339–372. doi: 10.1146/annurev.bi.55.070186.002011. [DOI] [PubMed] [Google Scholar]
- Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
- Roberts J. W. Termination factor for RNA synthesis. Nature. 1969 Dec 20;224(5225):1168–1174. doi: 10.1038/2241168a0. [DOI] [PubMed] [Google Scholar]
- Sharp J. A., Platt T. Rho-dependent termination and concomitant NTPase activity requires a specific, intact RNA region. J Biol Chem. 1984 Feb 25;259(4):2268–2273. [PubMed] [Google Scholar]
- Smits M. A., Jansen J., Konings R. N., Schoenmakers J. G. Initiation and termination signals for transcription in bacteriophage M13. Nucleic Acids Res. 1984 May 25;12(10):4071–4081. doi: 10.1093/nar/12.10.4071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanssens P., Remaut E., Fiers W. Inefficient translation initiation causes premature transcription termination in the lacZ gene. Cell. 1986 Mar 14;44(5):711–718. doi: 10.1016/0092-8674(86)90837-8. [DOI] [PubMed] [Google Scholar]
- Twigg A. J., Sherratt D. Trans-complementable copy-number mutants of plasmid ColE1. Nature. 1980 Jan 10;283(5743):216–218. doi: 10.1038/283216a0. [DOI] [PubMed] [Google Scholar]
- Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
- Wek R. C., Sameshima J. H., Hatfield G. W. Rho-dependent transcriptional polarity in the ilvGMEDA operon of wild-type Escherichia coli K12. J Biol Chem. 1987 Nov 5;262(31):15256–15261. [PubMed] [Google Scholar]
- von Gabain A., Belasco J. G., Schottel J. L., Chang A. C., Cohen S. N. Decay of mRNA in Escherichia coli: investigation of the fate of specific segments of transcripts. Proc Natl Acad Sci U S A. 1983 Feb;80(3):653–657. doi: 10.1073/pnas.80.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Hippel P. H., Bear D. G., Morgan W. D., McSwiggen J. A. Protein-nucleic acid interactions in transcription: a molecular analysis. Annu Rev Biochem. 1984;53:389–446. doi: 10.1146/annurev.bi.53.070184.002133. [DOI] [PubMed] [Google Scholar]




