Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Feb 25;18(4):885–890. doi: 10.1093/nar/18.4.885

Preservation of a complex satellite DNA in two species of echinoderms.

J Sainz 1, L Cornudella 1
PMCID: PMC330341  PMID: 2315043

Abstract

The cloning and sequencing of a tandemly arrayed repetitive DNA sequence from the sea cucumber Holothuria tubulosa has been recently described (Sainz, J., Azorín, F. and Cornudella, L. 1989. Gene 80, 57-64). We have now searched the genomes of several echinoderm species for the presence of homologous repetitive elements. A close but not identical repeated sequence has been identified in a related holothuroid, H. polii. The monomeric repeat unit is 391 bp long and has a base composition of 66.8% A and T residues, lined up in tracts of 4 nt or larger. The monomeric sequence lacks any internal subrepeat organization although it displays a substantial degree of internal redundancy in the form of inverted and direct repeats. The repeated element accounts for 0.34% of the genome which corresponds to a repetition frequency of about 0.5 x 10(5) copies per haploid complement. The intra- and interspecific homologies among monomers of the satellite DNA as derived from sequence analyses are very high, averaging 97%. The results suggest that the homogeneity of the highly reiterated DNA sequence may be attributed to evolutionary conservative trends.

Full text

PDF
885

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrighi F. E., Mandel M., Bergendahl J., Hsu T. C. Buoyant densities of DNA of mammals. Biochem Genet. 1970 Jun;4(3):367–376. doi: 10.1007/BF00485753. [DOI] [PubMed] [Google Scholar]
  2. Avila J., Montejo de Garcini E., Wandosell F., Villasante A., Sogo J. M., Villanueva N. Microtubule-associated protein MAP2 preferentially binds to a dA/dT sequence present in mouse satellite DNA. EMBO J. 1983;2(8):1229–1234. doi: 10.1002/j.1460-2075.1983.tb01574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bahnak B. R., Wu Q. Y., Coulombel L., Drouet L., Kerbiriou-Nabias D., Meyer D. A simple and efficient method for isolating high molecular weight DNA from mammalian sperm. Nucleic Acids Res. 1988 Feb 11;16(3):1208–1208. doi: 10.1093/nar/16.3.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bogenberger J. M., Neitzel H., Fittler F. A highly repetitive DNA component common to all Cervidae: its organization and chromosomal distribution during evolution. Chromosoma. 1987;95(2):154–161. doi: 10.1007/BF00332189. [DOI] [PubMed] [Google Scholar]
  7. Brutlag D., Appels R., Dennis E. S., Peacock W. J. Highly repeated DNA in Drosophila melanogaster. J Mol Biol. 1977 May 5;112(1):31–47. doi: 10.1016/s0022-2836(77)80154-x. [DOI] [PubMed] [Google Scholar]
  8. Corneo G. Satellite DNAs in eukaryotes: a non-adaptive mechanism of speciation which originated with sexual reproduction? Experientia. 1978 Sep 15;34(9):1141–1142. doi: 10.1007/BF01922918. [DOI] [PubMed] [Google Scholar]
  9. Cornudella L., Rocha E. Nucleosome organization during germ cell development in the sea cucumber Holothuria tubulosa. Biochemistry. 1979 Aug 21;18(17):3724–3732. doi: 10.1021/bi00584a013. [DOI] [PubMed] [Google Scholar]
  10. Doolittle W. F., Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980 Apr 17;284(5757):601–603. doi: 10.1038/284601a0. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Fowler R. F., Skinner D. M. Cryptic satellites rich in inverted repeats comprise 30% of the genome of a hermit crab. J Biol Chem. 1985 Jan 25;260(2):1296–1303. [PubMed] [Google Scholar]
  13. Gosden J. R., Mitchell A. R., Buckland R. A., Clayton R. P., Evans H. J. The location of four human satellite DNAs on human chromosomes. Exp Cell Res. 1975 Apr;92(1):148–158. doi: 10.1016/0014-4827(75)90648-5. [DOI] [PubMed] [Google Scholar]
  14. Hinegardner R. Cellular DNA content of the echinodermata. Comp Biochem Physiol B. 1974 Oct 15;49(2):219–226. doi: 10.1016/0305-0491(74)90156-4. [DOI] [PubMed] [Google Scholar]
  15. Ingle J., Pearson G. G., Sinclair J. Species distribution and properties of nuclear satellite DNA in higher plants. Nat New Biol. 1973 Apr 18;242(120):193–197. doi: 10.1038/newbio242193a0. [DOI] [PubMed] [Google Scholar]
  16. Jelinek W. R., Schmid C. W. Repetitive sequences in eukaryotic DNA and their expression. Annu Rev Biochem. 1982;51:813–844. doi: 10.1146/annurev.bi.51.070182.004121. [DOI] [PubMed] [Google Scholar]
  17. Lewin R. Repeated DNA still in search of a function. Science. 1982 Aug 13;217(4560):621–623. doi: 10.1126/science.6283639. [DOI] [PubMed] [Google Scholar]
  18. Lica L. M., Narayanswami S., Hamkalo B. A. Mouse satellite DNA, centromere structure, and sister chromatid pairing. J Cell Biol. 1986 Oct;103(4):1145–1151. doi: 10.1083/jcb.103.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maio J. J., Brown F. L., Musich P. R. Toward a molecular paleontology of primate genomes. I. The HindIII and EcoRI dimer families of alphoid DNAs. Chromosoma. 1981;83(1):103–125. doi: 10.1007/BF00286019. [DOI] [PubMed] [Google Scholar]
  20. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
  21. Orgel L. E., Crick F. H. Selfish DNA: the ultimate parasite. Nature. 1980 Apr 17;284(5757):604–607. doi: 10.1038/284604a0. [DOI] [PubMed] [Google Scholar]
  22. Pardue M. L. Repeated DNA sequences in the chromosomes of higher organisms. Genetics. 1975 Jun;79 (Suppl):159–170. [PubMed] [Google Scholar]
  23. Radic M. Z., Lundgren K., Hamkalo B. A. Curvature of mouse satellite DNA and condensation of heterochromatin. Cell. 1987 Sep 25;50(7):1101–1108. doi: 10.1016/0092-8674(87)90176-0. [DOI] [PubMed] [Google Scholar]
  24. Reed K. C., Mann D. A. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 1985 Oct 25;13(20):7207–7221. doi: 10.1093/nar/13.20.7207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  26. Sainz J., Azorín F., Cornudella L. Detection and molecular cloning of highly repeated DNA in the sea cucumber sperm. Gene. 1989 Aug 1;80(1):57–64. doi: 10.1016/0378-1119(89)90250-3. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simoens C. R., Gielen J., Van Montagu M., Inzé D. Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucleic Acids Res. 1988 Jul 25;16(14B):6753–6766. doi: 10.1093/nar/16.14.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Singer M. F. Highly repeated sequences in mammalian genomes. Int Rev Cytol. 1982;76:67–112. doi: 10.1016/s0074-7696(08)61789-1. [DOI] [PubMed] [Google Scholar]
  30. Weinblum D., Güngerich U., Geisert M., Zahn R. K. Occurrence of repetitive sequences in the DNA of some marine invertebrates. Biochim Biophys Acta. 1973 Mar 19;299(2):231–240. doi: 10.1016/0005-2787(73)90345-6. [DOI] [PubMed] [Google Scholar]
  31. Weiner A. M., Deininger P. L., Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. doi: 10.1146/annurev.bi.55.070186.003215. [DOI] [PubMed] [Google Scholar]
  32. Wright J. M. Nucleotide sequence, genomic organization and evolution of a major repetitive DNA family in tilapia (Oreochromis mossambicus/hornorum). Nucleic Acids Res. 1989 Jul 11;17(13):5071–5079. doi: 10.1093/nar/17.13.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wright J. M. Nucleotide sequence, genomic organization and evolution of a major repetitive DNA family in tilapia (Oreochromis mossambicus/hornorum). Nucleic Acids Res. 1989 Jul 11;17(13):5071–5079. doi: 10.1093/nar/17.13.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wu C. I., Lyttle T. W., Wu M. L., Lin G. F. Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell. 1988 Jul 15;54(2):179–189. doi: 10.1016/0092-8674(88)90550-8. [DOI] [PubMed] [Google Scholar]
  35. Wu J. C., Manuelidis L. Sequence definition and organization of a human repeated DNA. J Mol Biol. 1980 Sep 25;142(3):363–386. doi: 10.1016/0022-2836(80)90277-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES