Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Feb 25;18(4):1031–1036. doi: 10.1093/nar/18.4.1031

Alpha-amylase gene transcription in tissues of normal dog.

H Mocharla 1, R Mocharla 1, M E Hodes 1
PMCID: PMC330360  PMID: 2315015

Abstract

We studied the distribution of alpha-amylase mRNA in normal dog tissues by northern blotting (NB) and reverse transcription-polymerase chain reaction (RT-PCR) with human pancreatic (AMY2) and salivary (AMY1) alpha-amylase cDNA-specific primers. Analysis of poly(A+) RNA from various normal tissues by NB indicated the presence of detectable levels of alpha-amylase mRNA transcripts only in pancreas. Dot-blot analysis of DNA amplified with primers common to both (human) isoamylase mRNAs showed presence of alpha-amylase gene transcripts not only in pancreas but also in liver, small intestine, large intestine and fallopian tube. Traces of amylase gene transcripts were also observed in ovary, uterus and lung. Interestingly, amylase transcripts were not detectable in the parotid gland by NB or RT-PCR. We have also localized alpha-amylase mRNA transcripts to dog pancreas by in situ transcription and in situ hybridization. Our results suggest that there is high degree of homology between the alpha-amylase mRNA sequences in dog and human at least in the exon 3-4 regions of the human gene.

Full text

PDF
1031

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhoola K. D., Dorey G. Kallikrein, trypsin-like proteases and amylase in mammalian submaxillary glands. Br J Pharmacol. 1971 Dec;43(4):784–793. doi: 10.1111/j.1476-5381.1971.tb07214.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boer P. H., Hickey D. A. The alpha-amylase gene in Drosophila melanogaster: nucleotide sequence, gene structure and expression motifs. Nucleic Acids Res. 1986 Nov 11;14(21):8399–8411. doi: 10.1093/nar/14.21.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byrne B. C., Li J. J., Sninsky J., Poiesz B. J. Detection of HIV-1 RNA sequences by in vitro DNA amplification. Nucleic Acids Res. 1988 May 11;16(9):4165–4165. doi: 10.1093/nar/16.9.4165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carne T., Scheele G. Amino acid sequences of transport peptides associated with canine exocrine pancreatic proteins. J Biol Chem. 1982 Apr 25;257(8):4133–4140. [PubMed] [Google Scholar]
  5. Chelly J., Kaplan J. C., Maire P., Gautron S., Kahn A. Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature. 1988 Jun 30;333(6176):858–860. doi: 10.1038/333858a0. [DOI] [PubMed] [Google Scholar]
  6. Dalal F. R., Winsten S. Laboratory evaluation of a chromogenic amylase method. Clin Chim Acta. 1971 May;32(3):327–332. doi: 10.1016/0009-8981(71)90432-3. [DOI] [PubMed] [Google Scholar]
  7. Davis M. M., Hodes M. E., Munsick R. A., Ulbright T. M., Goldstein D. J. Pancreatic amylase expression in human pancreatic development. Hybridoma. 1986 Summer;5(2):137–145. doi: 10.1089/hyb.1986.5.137. [DOI] [PubMed] [Google Scholar]
  8. HIATT N. Investigation of the role of the small intestine in the maintenance of the serum amylase level of the dog. Ann Surg. 1961 Nov;154:864–873. doi: 10.1097/00000658-196111000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HIATT N. Observations of the blood amylase level in the dog with experimentally produced simple and strangulated obstructions of the small intestine. Ann Surg. 1959 Jan;149(1):77–86. doi: 10.1097/00000658-195901000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagenbüchle O., Tosi M., Schibler U., Bovey R., Wellauer P. K., Young R. A. Mouse liver and salivary gland alpha-amylase mRNAs differ only in 5' non-translated sequences. Nature. 1981 Feb 19;289(5799):643–646. doi: 10.1038/289643a0. [DOI] [PubMed] [Google Scholar]
  11. Handy D. E., Larsen S. H., Karn R. C., Hodes M. E. Identification of a human salivary amylase gene. Partial sequence of genomic DNA suggests a mode of regulation different from that of mouse, Amy1. Mol Biol Med. 1987 Jun;4(3):145–155. [PubMed] [Google Scholar]
  12. Hickey D. A., Benkel B. F., Boer P. H., Genest Y., Abukashawa S., Ben-David G. Enzyme-coding genes as molecular clocks: the molecular evolution of animal alpha-amylases. J Mol Evol. 1987;26(3):252–256. doi: 10.1007/BF02099856. [DOI] [PubMed] [Google Scholar]
  13. Horii A., Emi M., Tomita N., Nishide T., Ogawa M., Mori T., Matsubara K. Primary structure of human pancreatic alpha-amylase gene: its comparison with human salivary alpha-amylase gene. Gene. 1987;60(1):57–64. doi: 10.1016/0378-1119(87)90213-7. [DOI] [PubMed] [Google Scholar]
  14. Karn R. C. The comparative biochemistry, physiology, and genetics of animal alpha-amylases. Adv Comp Physiol Biochem. 1978;7:1–103. doi: 10.1016/b978-0-12-011507-5.50007-0. [DOI] [PubMed] [Google Scholar]
  15. Keller P. Enzyme activities in the dog: tissue analyses, plasma values, and intracellular distribution. Am J Vet Res. 1981 Apr;42(4):575–582. [PubMed] [Google Scholar]
  16. Larmas M., Mäkinen K. K., Scheinin A. Studies on dog saliva. IV. The effect of carbohydrate diet on the activity of some hydrolytic enzymes. Acta Odontol Scand. 1972 Dec;30(6):629–641. doi: 10.3109/00016357209019794. [DOI] [PubMed] [Google Scholar]
  17. MacDonald R. J., Crerar M. M., Swain W. F., Pictet R. L., Rutter W. J. Pancreas-specific genes: structure and expression. Cancer. 1981 Mar 15;47(6 Suppl):1497–1504. doi: 10.1002/1097-0142(19810315)47:6+<1497::aid-cncr2820471410>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  18. MacDonald R. J., Przybyla A. E., Rutter W. J. Isolation and in vitro translation of the messenger RNA coding for pancreatic amylase. J Biol Chem. 1977 Aug 10;252(15):5522–5528. [PubMed] [Google Scholar]
  19. MacGregor E. A. Alpha-amylase structure and activity. J Protein Chem. 1988 Aug;7(4):399–415. doi: 10.1007/BF01024888. [DOI] [PubMed] [Google Scholar]
  20. McGEACHIN R. L., GLEASON J. R., ADAMS M. R. Amylase distribution in extrapancreatic, extrasalivary tissues. Arch Biochem Biophys. 1958 Jun;75(2):403–411. doi: 10.1016/0003-9861(58)90439-9. [DOI] [PubMed] [Google Scholar]
  21. Merritt A. D., Karn R. C. The human alpha-amylases. Adv Hum Genet. 1977;8:135–234. [PubMed] [Google Scholar]
  22. Mocharla R., Mocharla H., Hodes M. E. A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations. Nucleic Acids Res. 1987 Dec 23;15(24):10589–10589. doi: 10.1093/nar/15.24.10589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morley D. J., Hodes M. E. In situ localization of amylase mRNA and protein. An investigation of amylase gene activity in normal human parotid gland. J Histochem Cytochem. 1987 Jan;35(1):9–14. doi: 10.1177/35.1.2432114. [DOI] [PubMed] [Google Scholar]
  24. NEUMANN G. J., SKUPP S., FARRAR J. T. STUDIES OF CANINE-LIVER AMYLASE. Biochim Biophys Acta. 1964 May 4;85:296–304. doi: 10.1016/0926-6569(64)90250-0. [DOI] [PubMed] [Google Scholar]
  25. Nishide T., Emi M., Nakamura Y., Matsubara K. Corrected sequences of cDNAs for human salivary and pancreatic alpha-amylases [corrected]. Gene. 1984 May;28(2):263–270. doi: 10.1016/0378-1119(84)90265-8. [DOI] [PubMed] [Google Scholar]
  26. Noon K. F., Rogul M., Brendle J. J., Keefe T. J. Detection and definition of canine intestinal carbohydrases, using a standardized method. Am J Vet Res. 1977 Jul;38(7):1063–1067. [PubMed] [Google Scholar]
  27. Nothman M. M., Callow A. D. Investigations on the origin of amylase in serum and urine. Gastroenterology. 1971 Jan;60(1):82–89. [PubMed] [Google Scholar]
  28. O'Donnell M. D., McGeeney K. F. Alpha-amylase and glucoamylase activities of canine serum. Comp Biochem Physiol B. 1975 Feb 15;50(2B):269–274. doi: 10.1016/0305-0491(75)90273-4. [DOI] [PubMed] [Google Scholar]
  29. Powell L. M., Wallis S. C., Pease R. J., Edwards Y. H., Knott T. J., Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell. 1987 Sep 11;50(6):831–840. doi: 10.1016/0092-8674(87)90510-1. [DOI] [PubMed] [Google Scholar]
  30. RAPP J. P. Normal values for serum amylase and maltase in dogs and the effect of maltase on the saccharogenic method of determining amylase in serum. Am J Vet Res. 1962 Mar;23:343–350. [PubMed] [Google Scholar]
  31. Rajasingham R., Bell J. L., Baron D. N. A comparative study of the isoenzymes of mammalian alpha-amylase. Enzyme. 1971;12(2):180–186. doi: 10.1159/000459530. [DOI] [PubMed] [Google Scholar]
  32. Rogers J. C. Conserved amino acid sequence domains in alpha-amylases from plants, mammals, and bacteria. Biochem Biophys Res Commun. 1985 Apr 16;128(1):470–476. doi: 10.1016/0006-291x(85)91702-4. [DOI] [PubMed] [Google Scholar]
  33. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  34. Schibler U., Hagenbüchle O., Wellauer P. K., Pittet A. C. Two promoters of different strengths control the transcription of the mouse alpha-amylase gene Amy-1a in the parotid gland and the liver. Cell. 1983 Jun;33(2):501–508. doi: 10.1016/0092-8674(83)90431-2. [DOI] [PubMed] [Google Scholar]
  35. Schibler U., Tosi M., Pittet A. C., Fabiani L., Wellauer P. K. Tissue-specific expression of mouse alpha-amylase genes. J Mol Biol. 1980 Sep 5;142(1):93–116. doi: 10.1016/0022-2836(80)90208-9. [DOI] [PubMed] [Google Scholar]
  36. Shear M. Substrate film techniques for the histochemical demonstration of amylase and protease in salivary glands. J Dent Res. 1972 Mar-Apr;51(2):368–380. doi: 10.1177/00220345720510022401. [DOI] [PubMed] [Google Scholar]
  37. Sierra F., Pittet A. C., Schibler U. Different tissue-specific expression of the amylase gene Amy-1 in mice and rats. Mol Cell Biol. 1986 Nov;6(11):4067–4076. doi: 10.1128/mcb.6.11.4067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tecott L. H., Barchas J. D., Eberwine J. H. In situ transcription: specific synthesis of complementary DNA in fixed tissue sections. Science. 1988 Jun 17;240(4859):1661–1664. doi: 10.1126/science.2454508. [DOI] [PubMed] [Google Scholar]
  39. Temin H. M., Baltimore D. RNA-directed DNA synthesis and RNA tumor viruses. Adv Virus Res. 1972;17:129–186. doi: 10.1016/s0065-3527(08)60749-6. [DOI] [PubMed] [Google Scholar]
  40. Vacíková A. Comparative study on some amylases in mammalian blood serum. Comp Biochem Physiol A Comp Physiol. 1971 Dec;40(4):975–978. doi: 10.1016/0300-9629(71)90286-6. [DOI] [PubMed] [Google Scholar]
  41. Wise R. J., Karn R. C., Larsen S. H., Hodes M. E., Gardell S. J., Rutter W. J. A complementary DNA sequence that predicts a human pancreatic amylase primary structure consistent with the electrophoretic mobility of the common isozyme, Amy2 A. Mol Biol Med. 1984 Oct;2(5):307–322. [PubMed] [Google Scholar]
  42. Zakowski J. J., Bruns D. E. Biochemistry of human alpha amylase isoenzymes. Crit Rev Clin Lab Sci. 1985;21(4):283–322. doi: 10.3109/10408368509165786. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES