Skip to main content
Evidence-based Complementary and Alternative Medicine : eCAM logoLink to Evidence-based Complementary and Alternative Medicine : eCAM
. 2012 Feb 26;2012:272749. doi: 10.1155/2012/272749

Ethnopharmacology of Medicinal Plants of the Pantanal Region (Mato Grosso, Brazil)

Isanete Geraldini Costa Bieski 1, Fabrício Rios Santos 1, Rafael Melo de Oliveira 1, Mariano Martinez Espinosa 2, Miramy Macedo 3, Ulysses Paulino Albuquerque 4, Domingos Tabajara de Oliveira Martins 1,*
PMCID: PMC3303862  PMID: 22474496

Abstract

Traditional knowledge is an important source of obtaining new phytotherapeutic agents. Ethnobotanical survey of medicinal plants was conducted in Nossa Senhora Aparecida do Chumbo District (NSACD), located in Poconé, Mato Grosso, Brazil using semi-structured questionnaires and interviews. 376 species of medicinal plants belonging to 285 genera and 102 families were cited. Fabaceae (10.2%), Asteraceae (7.82%) and Lamaceae (4.89%) families are of greater importance. Species with the greater relative importance were Himatanthus obovatus (1.87), Hibiscus sabdariffa (1.87), Solidago microglossa (1.80), Strychnos pseudoquina (1.73) and Dorstenia brasiliensis, Scoparia dulcis L., and Luehea divaricata (1.50). The informant consensus factor (ICF) ranged from 0.13 to 0.78 encompassing 18 disease categories,of which 15 had ICF greater than 0.50, with a predominance of disease categories related to injuries, poisoning and certain other consequences of external causes (ICF  =  0.78) having 65 species cited while 20 species were cited for mental and behavioral disorders (ICF  =  0.77). The results show that knowledge about medicinal plants is evenly distributed among the population of NSACD. This population possesses medicinal plants for most disease categories, with the highest concordance for prenatal, mental/behavioral and respiratory problems.

1. Introduction

Despite the fact that modern medicine, on the basis of the complex pharmaceutical industry, is well developed in most part of the world, the World Health Organization (WHO) through it Traditional Medicine Program recommends its Member States to formulate and develop policies for the use of complementary and alternative medicine (CAM) in their national health care programmes [1]. Among the components of CAM, phytotherapy practiced by the greater percentage of the world population through the use of plants or their derivatives, occupies a significant and unique position [2].

In this sense, documentation of the indigenous knowledge through ethnobotanical studies is important in the conservation and utilization of biological resources [3].

Brazil is a country with floral megadiversity, possessing six ecological domains, namely, Amazonian forest, Caatinga, Pampas, Cerrado, Atlantic Forest, and the Pantanal [4]. Mato Grosso region is noteworthy in this regard, as it occupies a prominent position both in the national and international settings, for it presents three major Brazilian ecosystems (the Pantanal, Cerrado, and Amazonian rainforest). Besides this, it also hosts diverse traditional communities in its territories, namely, the Indians descents (Amerindians), African descents, and the white Europeans. However, due to the mass migration from the rural areas and technological development, coupled with globalization of knowledge by the dominant nations, cultural tradition concerning the use of medicinal plants is in the major phase of declining [5].

The Pantanal is distinguishably the largest wetland ecosystem of the world, according to the classification by UNESCO World Heritage Center (Biosphere Reserve) [4]. The Pantanal vegetation is a mosaic consisting of species of the Amazonian rainforest, Cerrado, Atlantic forest, and Bolivian Chaco, adapted to special conditions, where there is alternations of both high humidity and pronounced dryness during the time of the year [4]. The presence in the Pantanal of the traditional populations that use medicinal plants for basic health care makes this region an important field for the ethnobotanical and ethnopharmacological studies [6, 7].

Because of the fact that the Pantanal communities are relatively isolated, they have developed private lives that involved much reliance on profound knowledge of the biological cycles, utilization of natural resources, and traditional technology heritage [8].

As a result of the aforementioned, this study aimed to systematically and quantitatively evaluate the information gathered from these Pantanal communities, highlight the relevance of the ethnobotanical findings, and cite and discuss relevant literatures related to medicinal plants with greater relative importance (RI) and high informant consensus factor (ICF) values obtained in the study.

2. Materials and Methods

2.1. Study Area

For the choice of study area, literature search was conducted to identify the Pantanal region in Mato Grosso, consisting of traditional communities where such studies have not yet been conducted and/or there were no ethnobotanical survey publications. The study design was cross-sectional and was conducted between the period of November, 2009 and February, 2010. The study setting chosen was NSACD located in the Poconé municipality, Mato Grosso State, Central West of Brazil (Figure 1) with coordinates of 16° 02′ 90′′ S and 056° 43′ 49′′ W. Poconé is located within the region of Cuiabá River valley, with an altitude of 142 m, occupies a territorial area of 17,260.86 km2, and of tropical climate. The mean annual temperature is 24°C (4–42°C) and the mean annual rainfall is 1,500 mm with rainy season occurring between December and February. The municipality is composed of 2 Districts (NSAC and Cangas), 5 villages, 11 settlements, 14 streets, and 72 communities (countryside) [9]. The population of NSACD is estimated to be 3,652 inhabitants, representing 11.5% of Poconé municipality [10]. The principal economic activities are mainly livestock farming, mining, and agriculture with great tourism potentials, because Poconé municipality is the gateway to the Pantanal region [9].

Figure 1.

Figure 1

Location of the study area. Poconé, Mato Grosso, in Midwest of Brazil.

2.2. Consent and Ethical Approval

Authorization and ethical clearance were sought from the relevant government (Health authority of Poconé and the National Council of Genetic Heritage of the Ministry of Environment (CGEN/MMA), Resolution 247 published in the Federal Official Gazette, in October, 2009, on access to the traditional knowledge for scientific research and Federal University of Mato Grosso and Júlio Muller Hospital Research Ethical Committees, Protocol 561/CEP-HUJM/08 authorities. Previsits were made to each community of NSACD to present the research project as well as to seek the consent of each potential informant.

2.3. Data Collection and Analysis

In this present study, sampling was done using probabilistic simple randomization and stratified sampling techniques [10, 11].

The population studied consists of inhabitants of 13 communities of NSACD, Mato Grosso State, considering an informant per family. The criteria for each informant chosen were age of 40 and above, residing in NSACD for more than 5 years (because there is large migration into the area because of the presence of ethanol producing factory).

These criteria are in line with the study objective coupled with the information gathered from the local authority [12].

In order to determine the estimated sample size (n), in this case, the number of families to be sampled per communities being considered, the following formula was utilized [11, 13]:

n=Np(1p)(N1)(d/zα/2  )2+p(1p). (1)

This study considered the population size of 1,179 families (N = 1, 179), confidence coefficient of 95% (z/2 = 1.96), sampling error of 0.05 (d = 0.05), a proportion of 0.5 (P = 0.5). It should be noted that the P = 0.5 was assigned due to nonexistence of previous information about this value as is usual in practice, to obtain conservative sample size which is representative at the same time.

In determining the sample size for the microarea, 5% error and 10% loss in sample were considered. To determine the sample size in each microarea, the sample size (290) was multiplied by the sampling fraction of each microarea and dividing the total number of families of the same microarea with the total number of families of all the microareas (1,179), thereby arriving at the sample sizes for each area as shown in Table 1.

Table 1.

Distribution of the 13 communities of Nossa Senhora Aparecida do Chumbo District.

ID COMMUNITY Total number of individuals Total number of families Sample fraction Sample size
1 Chumbo 946 216 0.1832 52
2 Canto do Agostinho, Santa Helena, Os Cagados, Várzea bonita 179 52 0.0441 15
3 Furnas II, Salobra, Zé Alves 165 59 0.0500 15
4 Campina II, Furnas I, Mundo Novo, Rodeio 279 81 0.0687 20
5 Campina de Pedra, Imbé 188 67 0.0568 16
6 Barreirinho, Coetinho, Figueira 253 95 0.0806 23
7 Bahia de Campo 257 74 0.0628 18
8 Agrovila, São Benedito 184 66 0.0560 16
9 Agroana 372 178 0. 1510 44
10 Bandeira, Minadouro 248 82 0.0696 20
11 Carretão, Deus Ajuda, Sangradouro, Pesqueiro, Varzearia 216 77 0.0653 19
12 Chafariz, Ramos, Sete Porcos, Urubamba 208 67 0.0568 16
13 Céu Azul, Capão Verde, Morro Cortado, Passagem de Carro, Varal 157 65 0.0551 16

Total 3,652 1,179 1.0000 290

ID = identification of the microarea.

The interviews were conducted with the help of 12 trained applicators, under the supervision of the respective investigator. Data collected included sociodemographic details, vernacular names of the plant species with their medicinal uses, methods of drug preparation, and other relevant information. The ethnobotanical data were organized using the Microsoft Office Access 2003 program and statistically analyzed using SPSS, version 15 for Windows (SPSS Inc., Chicago, Illinois, USA).

2.4. Plant Collection, Identification, and Herborization

The collection of plant materials were done in collaboration with the local specialists, soon after the interviews. Both indigenous and scientific plant names were compiled. The plant materials collected during the study period were herborized, mounted as herbarium voucher specimens, and deposited for taxonomic identification and inclusion in the collection of Federal University of Mato Grosso and CGMS Herbarium of Federal University of Mato Grosso do Sul, Brazil.

Plant species were identified according to standard taxonomic methods, based on floral morphological characters, analytical keys, and using, where possible, samples for comparison, as well as consultations with experts and literature [6, 7, 1419]. The plant species obtained were grouped into families according to the classification system of Cronquist [20], with the exception of the Pteridophyta and Gymnospermae. For corrections of scientific names and families, the official website of the Missouri Botanical Garden was consulted [21].

2.5. Quantitative Ethnobotany

The relative importance (RI) of each plant species cited by the informants was calculated according to a previously proposed method [22]. In order to calculate RI, the maximum obtainable by a species is two was calculated using (2) according to Oliveira et al. [23]

RI = NCS + NP, (2)

where RI: relative importance; NCS: number of body systems. It is given by the number of body systems, treated by a species (NSCS) over the total number of body system treated by the most versatile species (NSCSV): NCS = NSCS/NSCSV; NP: number of properties attributed to a specific species (NPS) over the total number of properties attributed to the most versatile species (NPSV): NP = NPS/NPSV.

We sought to identify the therapeutic indications which were more important in the interviews to determine the informant consensus factor (ICF), which indicates the homogenity of the information [23].

The ICF will be low (close to 0), if the plants are chosen randomly, or if the informants do not exchange information about their uses. The value will be high (close to 1), if there is a well defined criterion of selection in the community and/or if the information is exchanged among the informants [23].

ICF was calculated using the number of use citations in each category of plant disease (n ur), minus the number of species used (n t) divided by the number of use citations in each category minus one on the basis of (3):

ICF=nurntnur1. (3)

The citations for therapeutic purposes were classified using the 20 categories of the International Classification of Diseases and Related Health Problems, 10th edition-CID [24]: injuries, certain infectious, and parasitic diseases (I); neoplasms-tumors (II), diseases of blood and blood-forming organs and certain disorders involving the immune mechanism (III), endocrine, nutritional and metabolic diseases (IV) mental and behavioral disorders (V), nervous system (VI), diseases of eye and adnexa (VII), diseases of the ear and mastoid process (VIII), diseases of the circulatory system (IX), respiratory diseases (X), digestive diseases (XI), diseases of the skin and subcutaneous tissue (XII), diseases of the musculoskeletal system and connective tissue (XIII), genitourinary diseases (XIV), pregnancy, childbirth and (XV), certain conditions originating during the perinatal period (XVI), symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (XVIII) and injury, poisoning and certain other consequences of external causes (XIX).

We selected for further discussion species that presented RI ≥ 1.5, and are in a category with high ICF. We conducted literature review using among others, the databases of Web of Science, MEDLINE, SciELO and including nonindexed works. We also searched national data bases for dissertations and theses.

3. Results

A total of 262 informants were interviewed, representing 7.17% of the population of NSACD, 22.22% of the population aged ≥40 years and residing in the District for over five years. Of the respondents, 69% were female and 31% male, aged 40–94 years (median 55). 68% were born in the city of Poconé, and 62% have been residents for over 20 years in the District (Table 2).

Table 2.

Distribution of the 13 communities of Nossa Senhora Aparecida do Chumbo District, Poconé, Mato Grosso, Brazil.

ID Comunity Population Number of individualsa Sample fraction Sample size N Plant citations
1 Chumbo 946 216 0.1832 52 50 827
2 Canto do Agostinho, Santa Helena, Os Cagados, Várzea bonita 179 52 0.0441 15 10 131
3 Furnas II, Salobra, Zé Alves 165 59 0.050 15 10 99
4 Campina II, Furnas I, Mundo Novo, Rodeio 279 81 0.0687 20 11 179
5 Campina de Pedra, Imbé 188 67 0.0568 16 12 173
6 Barreirinho, Coetinho, Figueira 253 95 0.0806 23 23 213
7 Bahia de Campo 257 74 0.0628 18 13 461
8 Agrovila, São Benedito 184 66 0.056 16 16 141
9 Agroana 372 178 0.151 44 38 349
10 Bandeira, Minadouro 248 82 0.0696 20 22 171
11 Carretão, Deus Ajuda, Sangradouro, Pesqueiro, Varzearia 216 77 0.0653 19 23 180
12 Chafariz, Ramos, Sete Porcos, Urubamba 208 67 0.0568 16 16 200
13 Céu Azul, Capão Verde, Morro Cortado, Passagem de Carro, Varal 157 65 0.0551 16 18 165
N 3,652 1,179 1.000 290 262 3,289

ID: Identification of the microarea; N: Sample size; aInformants with age ≥ 40 years and period of residing ≥ 5 years.

Of the 262 respondents, 259 (99.0%) reported the use of medicinal plants in self health care, with a minimum of 1 plant and a maximum of 250 plants among the female respondents and a minimum of 2 plants and a maximum of 54 among the male respondents. A total of 3,289 citations were recorded corresponding to 376 different plant species which belong to 285 genera and 102 families. Fabaceae (10.2%), Asteraceae (7.82%), and Lamaceae (4.89%) families were the most representative in this study (Table 3).

Table 3.

Relation of the relative importance of the plant species mentioned by informants of Nossa Senhora Aparecida do Chumbo District, Poconé, Mato Grosso, Brazil.

Family/species Vernacular name Application Preparation (administration) Uses listed NCS NP RI
1. ACANTHACEAE
 1.1. Justicia pectoralis Jacq. Anador pain, fever, laxative, and muscle relaxant Infusion (I) 36 2 3 0.40
2. ADOXACEAE
 2.1. Sambucus australis Cham. & Schltdl. Sabugueiro Fever and measles Infusion (I, E) 24 2 2 0.33
3. ALISMATACEAE
 3.1. Echinodorus macrophyllus (Kuntze.) Micheli Chapéu-de- couro blood cleanser, stomach, rheumatism, and kidneys 43 4 4 0.67
4. AMARYLLIDACEAE
 4.1. Allium cepa L. Cebola wound healing Infusion (I) 1 1 1 0.17
 4.2. Allium fistulosum L. Cebolinha Flu Infusion (I) 1 1 1 0.17
 4.3. Allium sativum L. Alho hypertension Infusion (I) 7 1 1 0.17
5. AMARANTHACEAE
 5.1. Alternanthera brasiliana (L.) Kuntze Terramicina wound healing, itching, diabetes, pain, bone fractures, throat, flu, inflammation uterine, and relaxative muscular Infusion (I, E) 41 6 9 1.20
 5.2. Alternanthera dentata(Moench) Stuchlik ex R.E. Fr. Ampicilina wound healing and kidneys Infusion (I, E) 7 2 2 0.33
 5.3. Alternanthera ficoide (L.) P. Beauv. Doril muscular relaxative Infusion (I, E) 3 1 1 0.17
 5.4. Amaranthus aff. viridis L. Caruru-de-porco wound healing, pain, and kidneys Infusion (I) 4 3 3 0.50
 5.5. Beta vulgaris L. Beterraba anemia Infusion (I) 1 1 1 0.17
 5.6. Celosia argentea L. Crista-de-galo kidneys 5 3 3 0.50
 5.7. Chenopodium ambrosioides L. Erva-de-santa-maria wound healing, heart, diabetes, bone fractures, flu, kidneys, cough, and worms Infusion (I, E) 102 7 8 1.23
 5.8. Pfaffia glomerata (Spreng.) Pedersen Ginseng-brasileiro Obesity Infusion (I) 2 1 1 0.17
6. ANACARDIACEAE
 6.1. Anacardium humile A. St.– Hil. Cajuzinho-do-campo diabetes, dysentery, and hepatitis Infusion (I, E) 5 3 3 0.50
 6.2. Anacardium occidentale L. Cajueiro abortive, wound healing, cholesterol, teeth, blood cleanser, diabetes, diarrhea, dysentery, and pain Infusion (I, E) 30 6 9 1.20
 6.3. Astronium fraxinifolium Schott ex Spreng Gonçaleiro flu, hemorrhoids, and cough Infusion and maceration (I, E) 8 3 3 0.50
 6.4. Mangifera indica L. Mangueira Bronchitis, flu, and cough Infusion and maceration (I, E) 11 2 3 0.40
 6.5. Myracrodruon urundeuva (Allemão) Engl. Aroeira anemia, bladder bronchitis cancer, wound healing, blood cleanser, bone fractures, hernia, uterine inflammation, muscular relaxative, and cough Infusion, maceration, and decoction (I, E) 84 7 11 1.43
 6.6. Spondias dulcis Parkinson Caja-manga scabies Infusion (I, E) 2 1 1 0.17
 6.7. Spondias purpurea L. Seriguela wound healing and hepatitis Infusion (I, E) 2 2 2 0.33
7. ANNONACEAE
 7.1. Annona cordifolia Poepp. ex Maas & Westra Araticum-abelha Diabetes and bone fractures Infusion and decoction (I, E) 3 2 2 0.33
 7.2. Annona crassiflora Mart. Graviola diabetes Infusion (I, E) 11 1 1 0.17
 7.3. Duguetia furfuracea (A. St.- Hil.) Saff. Beladona-do-cerrado pain Infusion (I, E) 1 1 1 0.17
8. APIACEAE
 8.1. Coriandrum sativum L. Coentro flu Infusion (I) 1 1 1 0.17
 8.2. Eryngium aff. pristis Cham. & Schltdl. Lingua-de-tucano Tooth and muscular relaxative Infusion (I) 3 2 2 0.33
 8.3. Petroselinum crispum ((Mill) Fuss Salsinha flu Infusion (I) 1 1 1 0.17
 8.4. Pimpinella anisum L. Erva-doce pain soothing, constipation, and kidneys Infusion (I, E) 12 3 3 0.50
9. APOCYNACEAE
 9.1. Aspidosperma polyneuron (Müll.) Arg. Péroba Stomach and laxative Infusion and decoction (I, E) 5 1 2 0.23
 9.2. Aspidosperma tomentosum Mart. Guatambu gastritis Infusion (I) 4 1 1 0.17
 9.3. Catharanthus roseus (L.) G. Don Boa-noite mumps fever and kidneys Infusion (I) 8 3 3 0.50
 9.4. Geissospermum laeve (Vell.) Miers Pau-tenente Diabetes and pain Infusion (I) 6 2 2 0.33
 9.5. Hancornia speciosa var. gardneri (A. DC.) Müll. Arg. Mangava-mansa itching, diarrhea, and stomach Decoction and maceration (I, E) 8 3 3 0.50
 9.6. Himatanthus obovatus (Müll. Arg.) Woodson Angélica anemia, wound healing, cholesterol, blood cleanser, pain, nose bleeding, hypertension, uterine inflammation, labyrinthitis, pneumonia, relaxative muscular, worms, and vitiligo Maceration (I) 45 10 13 1.87
 9.7. Macrosiphonia longiflora (Desf.) Müll. Arg. Velame-do-campo hearth, blood cleanser, stroke, diuretic, pain, throat, muscular relaxative, and vitiligo Decoction (I) 5 6 8 1.13
 9.8. Macrosiphonia velame (A. St.-Hil.) Müll. Arg. Velame-branco flu Decoction (I) 73 1 1 0.17
10. ARACEAE
 10.1 Dieffenbachia picta Schott Comigo-ninguém-pode pain Maceration (E) 2 1 1 0.17
 10.2. Dracontium sp. Jararaquinha snakebite Infusion (I) 10 1 1 0.17
11. ARECACEAE
 11.1. Acrocomia aculeata Lodd. ex. Mart. Bocaiuveira heart, hepatitis, hypertension, and kidneys Decoction and syrup (I) 20 4 4 0.67
 11.2. Cocos nucifera L. Cocô-da-bahia kidneys Maceration (I) 2 1 1 0.17
 11.3. Orbignya phalerata Mart. Babaçu inflammation Decoction (I) 8 1 1 0.17
 11.4. Syagrus oleracea (Mart.) Becc. Guariroba kidneys Maceration (I) 2 1 1 0.17
12. ARISTOLOCHIACEAE
 12.1. Aristolochia cymbifera Mart & Zucc. Cipó-de-mil-homem dengue, blood cleanser, stomach, kidneys, and digestive Infusion (I) 11 4 5 0.73
 12.2. Aristolochia esperanzae Kuntze Papo-de-peru wound healing Infusion (I) 3 1 1 0.17
13. ASTERACEAE
 13.1. Acanthospermum australe (Loefl.). Kuntze Carrapicho, beijo-de-boi colic, kidneys, and runny cough Infusion (I) 31 2 3 0.40
 13.2. Acanthospermum hispidum DC. Chifre-de-garrotinho Gonorrhea and kidneys Infusion (I) 5 2 3 0.40
 13.3. Achillea millefolium L. Dipirona, Novalgina, pain, flu, and muscular relaxative Infusion (I) 13 3 4 0.57
 13.4. Achyrocline satureioides (Lam.) DC. Macela-do-campo diarrhea, pain, stomach, gastritis, flu, and hypertension Infusion (I) 13 5 6 0.90
 13.5. Ageratum conyzoides L. Mentrasto pain, labor pain, stomach, swelling in pregnant woman, rheumatism, and cough Infusion (I) 18 5 6 0.90
 13.6. Artemisia vulgaris L. Artemisia insomnia Infusion (I) 3 1 1 0.17
 13.7. Artemisia absinthium L. Losna, nor-vômica pain, stomach, liver, hernia, and muscular relaxative Infusion (I) 39 4 5 0.73
 13.8. Baccharis trimera (Less.) DC. Carqueja cancer, cholesterol, diabetes, diuretic, stomach, flu, and obesity Infusion (I) 31 5 7 0.97
 13.9. Bidens pilosa L. Picão-preto hepatitis, enteric, and kidneys Infusion (I, E) 20 3 3 0.50
 13.10. Brickellia brasiliensis (Spreng.) B.L. Rob. Arnica-do-campo wound healing, uterine inflammation, and kidneys Infusion (I) 13 2 3 0.40
 13.11. Calendula officinalis L. Calêndula anxiety Infusion (I) 6 1 1 0.17
 13.12. Centratherum aff. punctatum Cass. Perpétua-roxa muscular relaxative, and hearth Infusion (I) 3 2 2 0.33
 13.13. Chamomilla recutita (L.) Rauschert. Camomila soothing colic, pain, stomach, fever, and flu Infusion (I) 78 5 6 0.90
 13.14. Chaptalia integerrima (Vell.) Burkart Lingua-de-vaca worms Infusion (I) 6 1 1 0.17
 13.15. Chromolaena odorata (L.) R.M. King & H. Rob Cruzeirinho colic, pain, bone fractures, pain, bone fractures, and kidneys Infusion (I) 7 3 4 0.57
 13.16. Conyza bonariensis (L.) Cronquist Voadeira cancer itching, blood cleanser, leukemia, and worms Infusion (I) 15 4 5 0.73
 13.17. Elephantopus mollis Kunth Sussuaiá blood cleanser, pain, and uterine inflammation Infusion (I) 11 2 3 0.40
 13.18. Emilia fosbergii Nicolson Serralha conjunctivitis Infusion (I) 6 1 1 0.17
 13.19. Eremanthus exsuccus (DC.) Baker Bácimo-do-campo wound healing, stomach, bone fractures, and skin Infusion and maceration (I, E) 11 3 4 0.57
 13.20. Eupatorium odoratum L. Arnicão wound healing, muscular relaxative, and kidneys Infusion (I, E) 10 3 3 0.50
 13.21. Mikania glomerata Spreng. Guaco bronchitis cough Infusion (I) 14 2 2 0.33
 13.22. Mikania hirsutissima DC. Cipó-cabeludo diabetes Infusion (I) 10 1 1 0.17
 13.23. Pectis jangadensis S. Moore Erva-do-carregador blood cleanser and diabetes Infusion (I) 4 2 2 0.33
 13.24. Porophyllum ruderale (Jacq.) Cass. Picão-branco Hepatitis and kidneys Infusion (I) 11 2 2 0.33
 13.25. Solidago microglossa DC. Arnica-brasileira wound healing, blood cleanser, pain, bone fractures, hypertension, uterine inflammation, muscular relaxative, kidneys, worms, pain, stomach, hypertension, pneumonia, constipation, and relaxative muscular Infusion (I, E) 82 8 15 1.80
 13.26. Spilanthes acmella (L.) Murray Jambú liver Infusion (I) 5 1 1 0.17
 13.27. Tagetes minuta L. Cravo-de-defunto Dengue and flu Infusion (I) 3 2 2 0.33
 13.28. Taraxacum officinale L. Dente-de-leão blood cleanser Infusion (I) 18 1 1 0.17
 13.29. Tithonia diversifolia (Hemsl.) A. Gray Flor-da-amazônia alcoholism, stomach, kidney, and constipation Infusion (I) 16 3 3 0.50
 13.30.Vernonia condensata Baker Figatil-caferana cancer stomach and liver Infusion (I) 48 2 3 0.40
 13.31. Vernonia scabra Pers. Assa-peixe bronchitis blood cleanser, fever, flu, pneumonia, cold, and cough Infusion and syrup (I) 38 2 7 0.67
 13.32. Zinnia elegans Jacq. Jacinta pain Infusion (I) 1 1 1 0.17
14. BERBERIDACEAE
 14.1. Berberis laurina Billb. Raiz-de-são-joão blood cleanser and diarrhea Decoction and bottle (I, E) 6 2 2 0.33
15. BIGNONIACEAE
 15.1. Anemopaegma arvense (Vell.) Stellfeld & J.F. Souza Verga-teso, Alecrim-do-campo, Catuaba anxiety soothing kidneys Decoction and bottle (I, E) 13 2 3 0.40
 15.2. Arrabidaea chica (Humb. & Bonpl.) B. Verl. Crajirú wound healing and blood cleanser Infusion (I) 6 2 2 0.33
 15.3. Cybistax antisyphilitica (Mart.) Mart. Pé-de-anta fever, flu, relaxative muscular, and worms Infusion (I) 13 4 4 0.67
 15.4. Jacaranda caroba (Vell.) A. DC. Caroba wound healing Decoction and bottle (I, E) 3 1 1 0.17
 15.5. Jacaranda decurrens Cham. Carobinha allergy cancer wound healing, blood cleanser, diabetes, leprosy, hemorragia no nariz, inflammation uterina, and kidneys Decoction and bottle (I, E) 94 8 9 1.40
 15.6. Tabebuia aurea (Silva Manso) B. & H. f. ex S. Moore Ipê-amarelo worms Decoction and bottle (I) 2 1 1 0.17
 15.7. Tabebuia caraiba (Mart.) Bureau Para-tudo prostate cancer anemia, bronchitis cancer blood cleanser, diarrhea, pain, stomach, cough, and worms Decoction and bottle (I, E) 67 6 10 1.27
 15.8. Tabebuia impetiginosa (Mart. ex DC.) Standl. Ipê-roxo prostate cancer cough Decoction and bottle (I) 8 2 2 0.33
 15.9. Tabebuia serratifolia Nicholson Piúva prostate cancer Decoction and bottle (I, E) 3 1 1 0.17
 15.10. Zeyhera digitalis (Vell.) Hochn. Bolsa-de-pastor Stomach Decoction and bottle (I) 9 1 1 0.17
16. BIXACEAE
 16.1. Bixa orellana L. Urucum cholesterol, stroke, bone fractures, and measles Infusion (I) 11 4 4 0.67
 16.2. Cochlospermum regium (Schrank) Pilg. Algodãozinho-do-campo blood cleanser, stomach, bone fractures, inflammation uterina, syphilis, vitiligo, gonorrhea, and ringworm Infusion (I) 37 6 9 1.20
17. BOMBACACEAE
 17.1. Pseudobombax longiflorum (Mart. Et Zucc.) Rob. Embiriçu-do-cerrado pneumonia, cough, and tuberculosis Infusion (I) 17 3 3 0.50
 17.2. Eriotheca candolleana (K. Schum.) Catuaba prostate cancer 1 1 1 0.17
18. BORAGINACEAE
 18.1. Cordia insignis Cham. Calção-de-velho cough Infusion (I) 5 1 1 0.17
 18.2. Heliotropium filiforme Lehm. Sete-sangria thooth, blood cleanser, hypertension, and tuberculosis Infusion (I) 43 4 4 0.67
 18.3. Symphytum asperrimum Donn ex Sims Confrei wound healing, heart, throat, and obesity Infusion (I, E) 10 4 4 0.67
19. BRASSICACEAE
 19.1. Nasturtium officinale R. Br. Agrião bronchitis Infusion (I) 2 1 1 0.17
20. BROMELIACEAE
 20.1. Ananas comosus (L.) Merr. Abacaxi diuretic and cough Infusion (I) 9 2 2 0.33
 20.2. Bromelia balansae Mez Gravatá cough and bronhitis Infusion (I) 2 2 2 0.33
21. BURSERACEAE
 21.1. Commiphora myrrha (T. Nees) Engl. Mirra Menstruation and rheumatism Infusion (I) 3 2 2 0.33
 21.2. Protium heptaphyllum (Aubl.) Marchand Almésica blood cleanser, stroke, pain, muscular relaxative, rheumatism, and cough 23 3 6 0.70
22. CACTACEAE
 22.1. Cactus alatus Sw. Cacto Colic and guard delivery Infusion (I, E) 10 2 2 0.33
 22.2. Opuntia sp. Palma column 2 1 1 0.17
 22.3. Pereskia aculeata Mill. Oro-pro-nobis anemia Infusion (I) 2 1 1 0.17
23. CAPPARACEAE
 23.1. Crataeva tapia L. Cabaça cough Infusion (I) 2 1 1 0.17
 23.2. Cleome affinis DC. Mussambé diarrhea 1 1 1 0.17
24. CARICACEAE
 24.1. Carica papaya L. Mamoeiro worms, thooth, stomach, hepatitis, muscular relaxative, and cough Infusion (I) 17 4 6 0.80
25. CARYOCARACEAE
 25.1. Caryocar brasiliense A. St.-Hil. Pequizeiro diabetes, hypertension, labyrinthitis, and obesity 11 4 4 0.67
26. CELASTRACEAE
 26.1. Maytenus ilicifolia Mart.ex Reissek Espinheira-santa uric acid, bronchitis diarrhea, stomach, gastritis, flu, and cough Infusion (I) 8 5 7 0.97
27. CECROPIACEAE
 27.1. Cecropia pachystachya Trécul Embaúba cholesterol, blood cleanser, diabetes, pain, hypertension, leukemia, pneumonia, kidneys, and cough Infusion (I) 38 6 9 1.20
28. CLUSIACEAE
 28.1. Kielmeyera aff. grandiflora (Wawra) Saddi Pau-santo anemia 1 1 1 0.17
29. COMBRETACEAE
 29.1. Terminalia argentea Mart. Pau-de-bicho itching, diabetes, and cough 8 3 3 0.50
 29.2. Terminalia catappa L. Sete-copa conjunctivitis Infusion (I, E) 2 1 1 0.17
30. COMMELINACEAE
 30.1. Commelina benghalensis L. Capoeraba hemorrhoids Infusion (I) 1 1 1 0.17
 30.2. Commelina nudiflora L. Erva-de-santa-luzia wound healing and conjunctivitis Infusion (I) 3 2 2 0.33
 30.3. Dichorisandra hexandra (Aubl.) Standl. Cana-de-macaco flu, hypertension, and kidneys Infusion (I) 1 3 3 0.50
31. CONVOLVULACEAE
 31.1. Cuscuta racemosa Mart. Cipó-de-chumbo pain Infusion (I) 1 1 1 0.17
 31.2. Ipomoea batatas (L.) Lam. Batata-doce hearth Infusion (I) 1 1 1 0.17
 31.3. Ipomoea (Desr.) Roem. & asarifolia Schult Batatinha-do-brejo Stomach and worms Infusion (I) 4 2 2 0.33
32. COSTACEAE
 32.1. Costus spicatus (Jacq.) Sw. Caninha-do-brejo bladder diuretic, inflammation uterina, muscular relaxative, and kidneys Infusion (I) 40 3 5 0.63
33. CRASSULACEAE
 33.1. Kalanchoe pinnata (Lam.) Pers. Folha-da-fortuna allergy, bronchitis blood cleanser, and flu Infusion and juice (I) 11 2 4 0.47
34. CUCURBITACEAE
 34.1. Cayaponia tayuya (Cell.) Cogn. Raiz-de-bugre blood cleanser, pain, and hepatitis Infusion (I) 17 2 3 0.40
 34.2. Citrullus vulgaris Schrad. Melância bladder colic Infusion (I) 2 1 2 0.23
 34.3. Cucumis anguria L. Máxixe anemia Infusion (I) 1 1 1 0.17
 34.4. Cucumis sativus L. Pepino hypertension Maceration (I) 1
 34.5. Cucurbita maxima Duchesne ex Lam. Abóbora Pain and worms Infusion (I) 4 2 2 0.33
 34.6. Luffa sp Bucha Anemia and kidneys Infusion (I) 7 2 2 0.33
 34.7. Momordica charantia L. Melão-de-são-caetano bronchitis dengue, stomach, fever, flu, hepatitis, swelling in pregnant woman, malaria, muscular relaxative, and worms Infusion (I) 50 6 10 1.27
 34.8. Siolmatra brasiliensis (Cogn.) Baill. Taiuá Ulcer Infusion (I) 6 1 1 0.17
35. CYPERACEAE
 35.1. Bulbostylis capillaris (L.) C.B. Clarke Barba-de-bode diuretic, stomach, kidneys, and worms Infusion (I) 12 3 4 0.57
 35.2. Cyperus rotundus L. Tiririca Pain Infusion (I) 1 1 1 0.17
36. DILLENIACEAE
 36.1. Curatella americana L. Lixeira wound healing, colic, diarrhea, flu, kidneys, and cough Infusion (I, E) 24 5 6 0.90
 36.2. Davilla elliptica A. St.-Hil. Lixeira-de-cipó kidneys 3 1 1 0.17
 36.3. Davilla nitida (Vahl.) Kubitzki Lixeirinha delivery help, liver, hernia, and kidneys Infusion (I) 10 3 4 0.57
37. DIOSCOREACEAE
 37.1. Dioscorea sp. Cará-do-cerrado boil Infusion (I) 25 1 1 0.17
 37.2. Dioscorea trifida L Cará blood cleanser Infusion (I) 6 1 1 0.17
38. EBENACEAE
 38.1. Diospyros hispida A. DC. Olho-de-boi Pain and leprosy Infusion (I) 5 2 2 0.33
39. EQUISETACAE
 39.1. Equisetum arvense L. Cavalinha gastritis and kidneys Infusion (I) 8 2 2 0.33
40. ERYTHROXYLACEAE
 40.1 Erythroxylum aff. Daphnites Mart. Vasoura-de-bruxa syphilis Infusion (I) 1 1 1 0.17
41. EUPHORBIACEAE
 41.1. Croton antisyphiliticus Mart. Curraleira Hypertension and uterine inflammation Infusion (I) 6 2 2 0.33
 41.2. Croton sp. Curraleira-branca uterine inflammation Infusion (I) 3 1 1 0.17
 41.3. Croton urucurana Baill. Sangra-d'água cancer prostate cancer healing, diabetes, stomach, gastritis, uterine inflammation, kidneys, and ulcer Maceration (I) 37 5 9 1.10
 41.4. Euphorbia aff. Thymifolia L. Trinca-pedra kidneys Infusion (I) 3 1 1 0.17
 41.5. Euphorbia prostrata Aiton Fura-pedra kidneys Infusion (I) 4 1 1 0.17
 41.6. Euphorbia tirucalli L Aveloz cancer uterine inflammation Maceration (I) 3 2 2 0.33
 41.7. Jatropha sp. Capa-rosa diabetes Infusion (I) 10 1 1 0.17
 41.8. Jatropha elliptica (Poh) Oken Purga-de-lagarto allergy Infusion (I) 38 1 1 0.17
 41.9. Jatropha aff. Gossypiifolia L. Pinhão-roxo wound healing, prostrate cancer, itching, blood cleanser, stroke, snakebite, syphilis, worms, and vitiligo Maceration(I, E) 7 6 10 1.27
 41.10. Jatropha urens L. Cansansão diabetes Maceration (I, E) 6 1 1 0.17
 41.11. Manihot esculenta Crantz Mandioca-braba itching Maceration (I, E) 2 1 1 0.17
 41.12. Manihot utilissima Pohl. Mandioca itching Maceration (I, E) 7 1 1 0.17
 41.13. Ricinus communis L. Mamona wound healing and blood cleanser Maceration (I, E) 8 2 2 0.33
 41.14. Synadenium grantii Hook. f. Cancerosa gastritis, prostate cancer stomach, and pneumonia Maceration (I, E) 12 3 4 0.57
42. FABACEAE
 42.1. Acosmium dasycarpum (Volgel) Yakovlev Cinco-folha column, blood cleanser, pain, and kidneys Infusion (I) 19 2 4 0.47
 42.2. Acosmium subelegans (Mohlenbr.) Yakovlev Quina-gensiana wound healing, blood cleanser, pain, liver, uterine inflammation, delivery relapse, and kidneys Decoction (I) 16 5 7 0.97
 42.3. Albizia niopoides (Spr. ex Benth.) Burkart. Angico-branco bronhitis Decoction (I) 1 1 1 0.17
 42.4. Amburana cearensis (Allemão) A. C. Sm. Imburana cough Decoction (I) 13 1 1 0.17
 42.5. Anadenanthera colubrina (Vell.) Brenan Angico asthma, wound healing, expectorant, uterine inflammation, pneumonia, and cough Decoction (I) 12 5 6 0.90
 42.6. Andira anthelminthica Benth. Angelim diabetes Decoction (I) 3 1 1 0.17
 42.7. Bauhinia variegata L. Unha-de-boi kidneys Decoction (I) 4 1 1 0.17
 42.8. Bauhinia ungulata L. Pata-de-vaca diabetes Infusion (I) 11 1 1 0.17
 42.9. Bauhinia glabra Jacq. Cipó-tripa-de-galinha diarrhea, dysentery, and pain Infusion (I) 7 3 3 0.50
 42.10. Bauhinia rubiginosa Bong. Tripa-de-galinha kidneys Infusion (I) 2 1 1 0.17
 42.11. Bauhinia rufa (Bong.) Steud. Pata-de-boi diabetes Infusion (I) 1 1 1 0.17
 42.12. Bowdichia virgilioides Kunth Sucupira blood cleanser, paom, stomach, nose bleeding, cough, and worms Bottle (I) 20 4 6 0.80
 42.13. Caesalpinia ferrea Mart. Jucá wound healing, stomach, bone fractures, and inflammation of uterine Maceration (I, E) 15 3 4 0.57
 42.14. Cajanus bicolor DC. Feijão-andu diarrhea, stomach and worms Infusion (I) 8 2 3 0.40
 42.15. Cassia desvauxii Collad. Sene constipation, pain, fever, uterine inflammation, and labyrinthitis Infusion (I) 18 4 5 0.73
 42.16. Chamaecrista desvauxii (Collad.) Killip Sene-do-campo constipation, blood cleanser, pain, and fever Infusion (I) 10 2 4 0.47
 42.17. Copaifera sp. Pau-d'óleo wound healing, kidneys, ulcer Infusion (I) 8 3 3 0.50
 42.18. Copaifera langsdorffii var. glabra (Vogel) Benth. Copaiba bronchitis prostate cancer stroke, pain, throat, and tuberculosis Maceration and syrup (I) 13 5 6 0.90
 42.19. Copaifera marginata Benth. Guaranazinho ulcer Infusion (I) 4 1 1 0.17
 42.20. Desmodium incanum DC. Carrapicho bladder itching, diarrhea, pain, hepatitis, and kidneys Infusion (I) 18 5 6 0.90
 42.21. Dimorphandra mollis Benth. Fava-de-santo-inácio bronchitis wound healing, pain, flu, hypertension, pneumonia, rheumatism, cough, and worms Infusion (I) 21 6 9 1.20
 42.22. Dioclea latifolia Benth. Fruta-olho-de-boi stroke Infusion (I) 3 1 1 0.17
 42.23. Dioclea violacea Mart. Zucc. Coronha-de-boi osteoporosis Infusion (I) 6 2 2 0.33
stroke
 42.24. Dipteryx alata Vogel Cumbarú bronchitis cicartrizante, diarrhea, dysentery, pain, throat, flu, snakebite, and cough Infusion (I) 43 4 9 1.00
 42.25. Galactia glaucescens Kunth Três-folhas column, pain, bone fractures, and kidneys Infusion (I) 8 4 4 0.67
 42.26. Hymenaea courbaril L. Jatobá-mirim bladder bronchitis flu, pneumonia, and cough Syrup and decoction (I) 36 3 5 0.63
 42.27. Hymenaea stigonocarpa Mart. ex Hayne Jatoba-do-cerrado bronchitis prostate cancer pain, fertilizer, flu, and cough Syrup and decoction (I) 31 5 6 0.90
 42.28. Indigofera suffruticosa Mill. Anil ulcer Infusion (I) 2 1 1 0.17
 42.29. Inga vera Willd. Ingá Laxative and kidneys Infusion (I) 5 2 2 0.33
 42.30. Machaerium hirtum (Vell.) Stellfeld Espinheira-santa-nativa ulcer Infusion (I) 2 1 1 0.17
 42.31. Melilotus officinalis (L) Pall. Trevo-cheiroso bone fractures and thyroid Infusion (I) 5 2 2 0.33
 42.32. Mimosa debilis var. vestita (Benth.) Barneby Dorme-dorme soothing Infusion (I) 2 1 1 0.17
 42.33. Mucuna pruriens (L.) DC. Macuna stroke Infusion (I) 2 1 1 0.17
 42.34. Peltophorum dubium (Spreng.) Taub. Cana-fistula gastritis Infusion (I) 5 1 1 0.17
 42.35. Platycyamus regnellii Benth. Pau-porrete anemia Infusion (I) 1 1 1 0.17
 42.36. Pterodon pubescens (Benth.) Benth. Sucupira-branca worms, pain, and stomach SYRope, decoction and maceration (I) 2 3 3 0.50
 42.37. Senna alata (L.) Roxb. Mata-pasto throat, worms, and vitiligo Infusion (I) 6 3 3 0.50
 42.38. Senna occidentalis (L.) Link Fedegoso blood cleanser, pain, flu, cough, and worms Infusion (I) 42 3 5 0.63
 42.39. Stryphnodendron obovatum Benth. Barbatimão 1 wound healing Syrup and decoction (I, E) 57 1 1 0.17
 42.40. Stryphnodendron adstringens (Mart.) Coville Barbatimão 2 bladder bronchitis, colic, stomach, bone fractures, uterine inflammation, relaxative muscular, and ulcer Syrup and decoction (I, E) 15 4 9 1.00
 42.41. Tamarindus indica L. Tamarindo anxiety pain, thooth, laxative, osteoporosis, syphilis, and worms Maceration and juice (I) 30 6 7 1.07
43. FLACOURTIACEAE
 43.1. Casearia silvestris Sw. Guaçatonga Epilepsy and kidneys Infusion (I) 3 2 2 0.33
44. GINKGOACEAE
 44.1. Ginkgo biloba L. Ginco-biloba vertebral Infusion (I) 1 1 1 0.17
45. HERRERIACEAE
 45.1. Herreria salsaparilha Mart. Salsaparilha column, blood cleanser, muscular relaxative, and kidneys Infusion (I) 12 3 4 0.57
46. HIPPOCRATEACEAE
 46.1. Salacia aff. elliptica (Mart. ex Schult.) G. Don Saputa-do-brejo pain Infusion (I) 6 1 1 0.17
47. IRIDACEAE
 47.1. Eleutherine bulbosa (Mill.) Urb. Palmeirinha pain, hemorrhoids, cough, and blood cleanser Infusion (I) 11 2 4 0.47
48. LAMIACEAE
 48.1. Hyptis cf. hirsuta Kunth Hortelã-do-campo diabetes, stomach, flu, cough, and worms Infusion (I) 23 5 5 0.83
 48.2. Hyptis paludosa St.-Hil.ex Benht. Alevante cold Infusion (I) 4 1 1 0.17
 48.3. Hyptis sp. Hortelã-bravo Diabetes and cough Infusion (I) 6 2 2 0.33
 48.4. Hyptis suaveolens (L.) Poit. Tapera-velha pain, stomach, flu, constipation, kidneys, and worms Infusion (I) 42 5 6 0.90
 48.5. Leonotis nepetifolia (L.) R. Br. Cordão-de-são-francisco column, hearth, blood cleanser, stomach, fever, gastritis, flu, hypertension, labyrinthitis, muscular relaxative, and kidneys Infusion (I) 38 7 11 1.43
 48.6. Marsypianthes chamaedrys (Vahl) Kuntze Alfavaca/Hortelã-do-mato flu, hypertension, and cough Infusion (I) 8 3 3 0.50
 48.7. Melissa officinalis L Melissa soothing Infusion (I) 2 1 1 0.17
 48.8. Mentha crispa L. Hortelã-folha-miuda anemia, liver, cough, and worms Infusion (I) 16 4 4 0.67
 48.9. Mentha pulegium L. Poejo bronchitis soothing fever, flu, cold, and cough Infusion (I) 59 3 6 0.70
 48.10. Mentha spicata L. Hortelã-vicki bronchitis flu, wound healing, stomach, and worms Infusion (I) 24 4 5 0.73
 48.11. Mentha x piperita L. Hortelã-pimenta bronchitis flu, cough and worms Infusion (I) 42 3 4 0.57
 48.12. Mentha x villosa Huds. Hortelã-rasteira stomach, flu, cold, and worms Infusion (I) 86 3 4 0.57
 48.13. Ocimum kilimandscharicum Baker ex Gürke Alfavacaquinha flu Infusion (I) 2 1 1 0.17
 48.14. Ocimum minimum L. Manjericão kidneys, sinusitis, and worms Infusion (I) 7 3 3 0.50
 48.15. Origanum majorana L. Manjerona heart Infusion (I) 4 1 1 0.17
 48.16. Origanum vulgare L. Orégano cough Infusion (I) 1 1 1 0.17
 48.17. Plectranthus amboinicus (Lour.) Spreng. Hortelã-da-folha-gorda bronchitis flu, uterine inflammation, and cough Infusion and syrup (I) 7 3 4 0.57
 48.18. Plectranthus barbatus Andrews Boldo-brasileiro pain, stomach, liver, and malaise Maceration (I) 99 2 4 0.47
 48.19. Plectranthus neochilus Schltr. Boldinho stomach Maceration (I) 1 1 1 0.17
 48.20. Rosmarinus officinalis L. Alecrim anxiety soothing hearth, pain, hypertension, insomnia, labyrinthitis, sluggishness memory, tachycardia, and vitiligo Infusion and maceration (I) 31 6 10 1.27
49. LAURACEAE
 49.1. Cinnamomum camphora (L.) Nees & Eberm. Cânfora pain Infusion and maceration (I) 1 1 1 0.17
 49.2. Cinnamomum zeylanicum Breyne Canela-da-india aphrodisiac, tonic, obesity, and cough Infusion (I) 11 3 4 0.57
 49.3. Persea americana Mill. Abacateiro diuretic, hypertension, and kidneys Infusion and maceration (I) 31 3 3 0.50
50. LECYTHIDACEAE
 50.1. Cariniana rubra Gardner ex Miers Jequitibá bladder wound healing, colic, pain, uterine inflammation, rheumatism, cough, and ulcer Infusion and maceration (I) 49 5 8 1.03
51. LOGANIACEAE
 51.1. Strychnos pseudoquina A. St.-Hil. Quina anemia, wound healing, cholesterol, blood cleanser, pain, stomach, bone fractures, flu, uterine inflammation, pneumonia, muscle relaxant, cough, ulcer, and worms Decoction and maceration (I, E) 107 8 14 1.73
52. LORANTHACEAE
 52.1. Psittacanthus calyculatus (D.C.) G. Don Erva-de-passarinho stroke, pain, flu, and pneumonia Infusion and maceration (I) 14 3 4 0.57
53. LYTHRACEAE
 53.1. Adenaria floribunda Kunth Veludo-vermelho kidneys 3 1 1 0.17
 53.2. Lafoensia pacari A. St.-Hil. Mangava-braba wound healing, diarrhea, pain, stomach, gastritis, kidneys, and ulcer Decoction and maceration (I, E) 73 5 7 0.97
54. MALPIGHIACEAE
 54.1. Byrsonima orbignyana A. Juss. Angiquinho wound healing Decoction and maceration (I) 2 1 1 0.17
 54.2. Byrsonima sp. Semaneira pain Infusion (I) 1 1 1 0.17
 54.3. Byrsonima verbascifolia (L.) DC. Murici-do-cerrado column Infusion (I) 3 2 2 0.33
uterine inflammation
 54.4. Camarea ericoides A. St.-Hil. Arniquinha wound healing Infusion (I) 11 1 1 0.17
 54.5. Galphimia brasiliensis (L.) A. Juss. Mercúrio-do-campo wound healing, itching, thooth, and bone fractures Infusion (I) 7 3 4 0.57
 54.6. Heteropterys aphrodisiaca O. Mach. Nó-de-cachorro brain, wound healing, blood cleanser, impotence, muscular relaxative, and rheumatism Decoction (I) 23 5 6 0.90
 54.7. Malpighia emarginata DC. Cereja wound healing Infusion (I) 5 1 1 0.17
 54.8. Malpighia glabra L. Aceroleira bronchitis dengue, stomach, fever, and flu Infusion (I) 24 4 5 0.73
55. MALVACEAE
 55.1. Brosimum gaudichaudii Trécul Mama-cadela stomach Infusion (I) 13 1 1 0.17
 55.2. Gossypium barbadense L. Algodão-de-quintal blood cleanser, stomach, vitiligo, inflammation, and gonorrhea Infusion (I) 47 5 5 0.83
 55.3. Guazuma ulmifolia var. tomentosa (Kunth) K. Schum. Chico-magro diarrhea, kidneys, bronchitis wound healing Infusion and decoction (I) 10 4 4 0.67
 55.4. Hibiscus pernambucensis Bertol. Algodão-do-brejo wound healing, colic, flu, and uterine inflammation Infusion (I) 2 3 4 0.57
 55.5. Hibiscus rosa-sinensis L. Primavera pain Infusion (I) 2 1 1 0.17
 55.6. Hibiscus sabdariffa L. Quiabo-de-angola, Hibisco anxiety hearth, flu, tachycardia, kidneys, colic, runny, diarrhea, pain, uterine inflammation, labyrinthitis, snakebite, and pneumonia Infusion (I) 18 10 13 1.87
 55.7. Helicteres sacarolha A. St.-Hil. Semente-de-macaco Hypertension and ulcer Infusion (I) 2 2 2 0.33
 55.8. Malva sylvestris L. Malva-branca wound healing, conjunctivitis, runny, blood cleanser, diuretic, boil, uterine inflammation, and rheumatism Infusion (I) 31 7 8 1.23
 55.9. Malvastrum corchorifolium (Desr.) Britton ex Small Malva tonsillitis wound healing, pain, and uterine inflammation Infusion (I) 13 4 4 0.67
 55.10. Sida rhombifolia L. Guaxuma obesity Infusion (I) 5 1 1 0.17
56. MELASTOMATACEAE
 56.1. Leandra purpurascens (DC.) Cogn. Pixirica rheumatism Infusion (I) 1 1 1 0.17
 56.2. Tibouchina clavata (Pers.) Wurdack Cibalena pain Infusion (I) 3 1 1 0.17
 56.3. Tibouchina urvilleana (DC.) Cogn. Buscopam-de-casa stomach Infusion (I) 1 1 1 0.17
57. MELIACEAE
 57.1. Azadirachta indica A. Juss. Neem diabetes Infusion and decoction (I, E) 1 1 1 0.17
 57.2. Cedrela odorata L. Cedro wound healing Infusion (I) 3 1 1 0.17
58. MENISPERMACEAE
 58.1. Cissampelos sp. Orelha-de-onça Column and kidneys Infusion (I) 3 2 2 0.33
59. MORACEAE
 59.1. Artocarpus integrifolia L.f. Jaca diuretic Infusion (I) 1 1 1 0.17
 59.2. Chlorophora tinctoria (L.) Gaudich. ex Benth. Taiúva osteoporosis and muscular relaxative Infusion (I) 2 2 2 0.33
 59.3. Dorstenia brasiliensis Lam. Carapiá wound healing, colic, thooth, blood cleanser, dysentery, pain, flu, laxative, menstruation, pneumonia, relapse delivery, and kidneys Infusion (I) 41 7 12 0.50
 59.4. Ficus brasiliensis Link. Figo gastritis Infusion (I) 4 1 1 0.17
 59.5. Ficus pertusa L. f. Figueirinha stomach Infusion (I) 5 1 1 0.17
60. MUSACEAE
 60.1. Musa x paradisiaca L. Bananeira-de-umbigo bronchitis anemia and pain Infusion and syrup (I) 9 3 3 0.50
61. MYRTACEAE
 61.1. Eucalyptus citriodora Hook. Eucálipto bronchitis diabetes, fever, flu, sinusitis, and cough Infusion and syrup (I) 22 3 6 0.70
 61.2. Eugenia pitanga (O. Berg) Kiaersk. Pitanga pain, throat, flu, and kidneys Infusion (I) 10 3 4 0.57
 61.3. Psidium guajava L. Goiabeira diarrhea Infusion (I) 19 1 1 0.17
 61.4. Psidium guineense Sw. Goiaba-áraça pain, diarrhea, and hypertension Infusion (I) 11 3 3 0.50
 61.5. Syzygium aromaticum (L.) Merr. & L. M. Perry Cravo-da-india Throat and cough Infusion (I) 5 1 2 0.23
 61.6. Syzygium jambolanum (Lam.) DC. Azeitona-preta cholesterol Decoction (I, E) 4 1 1 0.17
62. NYCTAGINACEAE
 62.1. Boerhavia coccinea L. Amarra-pinto bladder icterus, inflammation uterina, and kidneys Infusion (I) 22 2 4 0.47
 62.2. Mirabilis jalapa L. Maravilha heart, pain, and hypertension Infusion (I) 8 2 3 0.40
63. OLACACEAE
 63.1. Ximenia americana L. Limão-bravo Trush and diuretic Infusion (I) 4 2 2 0.33
64. OPILIACEAE
 64.1. Agonandra brasiliensis Miers ex Benth. & Hook f. Pau-marfim uterine inflammation Decoction (I, E) 1 1 1 0.17
65. ORCHIDACEAE
 65.1. Vanilla palmarum (Salzm. ex Lindl.) Lindl. Baunilha hypertension Infusion (I) 2 1 1 0.17
 65.2. Oncidium cebolleta (Jacq.) Sw. Orquidea pain Infusion (I) 2 1 1 0.17
66. OXALIDACEAE
 66.1. Averrhoa carambola L. Carambola hypertension Infusion (I) 8 1 1 0.17
 66.2. Oxalis aff. hirsutissima Mart. ex Zucc. Azedinha obesity Infusion (I) 9 1 1 0.17
67. PAPAVERACEAE
 67.1. Argemone mexicana L. Cardo-santo hypertension Infusion (I) 8 1 1 0.17
68. PASSIFLORACEAE
 68.1. Passiflora alata Curtis Maracujá Infusion (I) 9 1 1 0.17
 68.2. Passiflora cincinnata Mast. Maracujá-do-mato soothing hypertension Infusion (I) 5 2 2 0.33
69. PEDALIACEAE
 69.1 Sesamum indicum L. Gergelim stomach, liver, gastritis, ulcer, and worms Infusion and maceration (I) 12 2 5 0.53
70. PHYLLANTHACEAE
 70.1. Phyllanthus niruri L. Quebra-pedra kidneys Infusion (I) 32 1 1 0.17
71. PHYTOLACCACEAE
 71.1. Petiveria alliacea L. Guiné rheumatism Infusion (I, E) 4 1 1 0.17
72. PIPERACEAE
 72.1. Piper callosum Ruiz & Pav Ventre-livre/elixir paregórico kidneys Infusion (I) 1 1 1 0.17
 72.2. Piper cuyabanum C. DC. Jaborandi pain, stomach, and loss of hair Infusion (I, E) 10 3 3 0.50
 72.3. Pothomorphe umbellata (L.) Miq. Pariparoba blood cleanser, stomach, liver, and pneumonia Infusion (I) 11 3 3 0.50
73. PLANTAGINACEAE
 73.1. Plantago major L. Tanchagem heart, pain, and laxative Infusion (I) 16 3 3 0.50
74. POACEAE
 74.1. Andropogon bicornis L. Capim-rabo-de-lobo uterine inflammation Infusion (I) 3 1 1 0.17
 74.2. Coix lacryma-jobi L. Lácrimas-de-nossa-senhora kidneys Infusion (I, E) 4 1 1 0.17
 74.3. Cymbopogon citratus (DC.) Stapfc Capim-cidreira soothing blood cleanser, pain, stomach, expectorant, fever, flu, hypertension, muscular relaxative, kidneys, tachycardia, and cough Infusion and juice (I) 49 5 12 1.30
 74.4. Cymbopogon nardus (L.) Rendle. Capim-citronela flu, cough, and tuberculosis Infusion (E) 11 2 2 0.33
74.5. Digitaria insularis (L.) Mez ex Ekman Capim-amargoso wound healing, stomach, bone fractures, and rheumatism Infusion (I) 14 3 4 0.57
74.6. Eleusine indica (L.) Gaertn. Capim-pé-de-galinha Hypertension and swelling in pregnant woman Infusion (I) 6 2 2 0.33
 74.7. Imperata brasiliensis Trin. Capim-sapé diabetes, pain, hepatitis, kidneys, and vitiligo Infusion (I) 12 5 5 0.83
 74.8. Melinis minutiflora P. Beauv. Capim-gordura dengue, blood cleanser, stroke, flu, kidneys, sinusitis, cough, and tumors Infusion (I) 31 7 8 1.23
 74.9. Oryza sativa L. Arroz bladder Infusion (I) 1 1 1 0.17
 74.10. Saccharum officinarum L. Cana-de-açúcar kidneys, anemia, and hypertension Infusion (I) 2 3 3 0.50
 74.11. Zea mays L. Milho bladder kidneys Infusion (I) 3 2 2 0.33
75. POLYGALACEAE
 75.1. Polygala paniculata L. Bengué rheumatism Infusion (I) 6 1 1 0.17
76. POLYGONACEAE
 76.1. Coccoloba cujabensis Wedd. Uveira diuretic Infusion (I) 1 1 1 0.17
 76.2. Polygonum cf. punctatum Elliott Erva-de-bicho wound healing, dengue, stomach, fever, flu, and hemorrhoids Infusion (I) 41 5 6 0.90
 76.3. Rheum palmatum L. Ruibarbo blood cleanser, dysentery, pain, and snakebite Infusion (I) 6 4 4 0.67
 76.4. Triplaris brasiliana Cham. Novatero diabetes Infusion (I) 1 1 1 0.17
77. POLYPODIACEAE
 77.1. Phlebodium decumanum (Willd.) J. Sm. Rabo-de-macaco diuretic, hepatitis, and kidneys Infusion (I) 9 2 3 0.40
 77.2. Pteridium aquilinum (L.) Kuhn Samambaia colic, blood cleanser, and rheumatism Infusion (I) 8 3 3 0.50
 77.3. Pteridium sp. Samambaia-de-cipo rheumatism Infusion (I) 1 1 1 0.17
78. PONTEDERIACEAE
78.1. Eichhornia azurea (Sw.) Kunth Aguapé ulcer Infusion (I) 3 1 1 0.17
79. PORTULACACEAE
 79.1. Portulaca oleracea L. Onze-horas hypertension Infusion (I) 3 1 1 0.17
80. PROTEACEAE
 80.1. Roupala montana Aubl. Carne-de-vaca muscular relaxative Infusion (I) 2 1 1 0.17
81. PUNICACEAE
 81.1. Punica granatum L. Romã colic, diarrhea, pain, throat, inflammation uterina, and kidneys Infusion and maceration (I, E) 41 3 6 0.70
82. RHAMNACEAE
 82.1. Rhamnidium elaeocarpum Reissek Cabriteiro anemia, diarrhea, diuretic, pain, stomach, and worms Infusion (I) 37 5 6 0.90
83. ROSACEAE
 83.1. Rosa alba L. Rosa-branca wound healing, pain, and uterine inflammation Infusion and maceration (I, E) 6 3 3 0.50
 83.2. Rosa graciliflora Rehder & E. H. Wilson Rosa-amarela pain Infusion and maceration (I, E) 1 1 1 0.17
 83.3. Rubus brasiliensis Mart. Amoreira cholesterol, hypertension, labyrinthitis, menopause, obesity, osteoporosis, and kidneys Infusion and tintura (I) 38 6 7 1.07
84. RUBIACEAE
 84.1. Chiococca alba (L.) Hitchc. Cainca pain, flu, and rheumatism Infusion (I) 8 3 3 0.50
 84.2. Cordiera edulis (Rich.) Kuntze Marmelada worms Maceration and syrup (I) 3 1 1 0.17
 84.3. Cordiera macrophylla (K. Schum.) Kuntze Marmelada-espinho worms Maceration and syrup (I) 1 1 1 0.17
 84.4. Cordiera sessilis (Vell.) Kuntze Marmelada-bola Flu and worms Maceration and syrup (I) 4 2 2 0.33
 84.5. Coutarea hexandra (Jacq.) K. Schum. Murtinha diarrhea Infusion (I) 1 1 1 0.17
 84.6. Genipa americana L. Jenipapo appendicitis bronchitis diabetes and kidneys Infusion and syrup (I) 8 4 4 0.67
 84.7. Guettarda viburnoides Cham. & Schltdl. Veludo-branco blood cleanser and ulcer Infusion (I) 5 2 2 0.33
 84.8. Palicourea coriacea (Cham.) K. Schum. Douradinha-do-campo prostate cancer hearth, blood cleanser, diuretic, flu, hypertension, insomnia, relaxative muscular, and kidneys Infusion (I) 62 7 9 1.30
 84.9. Palicourea rigida Kunth Doradão Kidneys and cough Infusion and decoction (I) 5 2 2 0.33
 84.10. Rudgea viburnoides (Cham.) Benth. Erva-molar column, thooth, blood cleanser, dysentery, rheumatism, and kidneys Infusion (I) 44 5 6 0.90
 84.11. Tocoyena formosa (Cham. & Schltdl.) K. Schum. Jenipapo-bravo kidneys Infusion (I) 1 1 1 0.17
 84.12. Uncaria tomentosa (Willd. ex Roem. & Schult.) DC. Unha-de-gato intoxication, rheumatism, and kidneys Infusion (I) 10 3 3 0.50
85. RUTACEAE
 85.1. Citrus aurantiifolia (Christm.) Swingle Lima soothing hearth, and hypertension Infusion (I) 8 2 3 0.40
 85.2. Citrus limon (L.) Osbeck Limão colic, diabetes, pain, liver, flu, hypertension, and cough Infusion (I) 17 5 7 0.97
 85.3. Citrus sinensis (L.) Osbeck Laranja soothing wound healing, fever, flu, pneumonia, and thyroid Infusion (I) 30 4 6 0.80
 85.4. Ruta graveolens L. Arruda colic, conjunctivitis, pain, stomach, fever, gastritis, nausea, and laxative muscular Infusion (I) 57 4 8 0.93
 85.5. Spiranthera odoratissima A.St.-Hil. Manacá rheumatism Infusion (I) 6 1 1 0.17
 85.6. Zanthoxylum cf. rhoifolium Lam. Mamica-de-porca diabetes, diarrhea, hemorrhoids, and muscular relaxative Decoction (I, E) 12 4 4 0.67
86. SALICACEAE
 86.1. Casearia silvestris Sw. Chá-de-frade blood cleanser, pain, and fever Infusion (I) 10 1 3 0.30
87. SAPINDACEAE
 87.1. Dilodendron bipinnatum Radlk. Mulher-pobre bone fractures Infusion (I) 5 2 2 0.33
uterine inflammation
 87.2. Magonia pubescens A. St.-Hil. Timbó wound healing, pain, and cough Maceration (I, E) 7 2 3 0.40
 87.3. Serjania erecta Radk. Cinco-pontas column, muscular relaxative, and kidneys Infusion (I) 9 2 3 0.40
 87.4. Talisia esculenta (A. St.-Hil.) Radlk. Pitomba column, pain, and rheumatism Infusion (I) 6 2 3 0.40
88. SAPOTACEAE
 88.1. Pouteria glomerata (Miq.) Radlk. Laranjinha-do-mato fever Infusion (I) 1 1 1 0.17
 88.2. Pouteria ramiflora (Mart.) Radlk. Fruta-de-viado Ulcer and kidneys Infusion (I) 1 2 2 0.33
89. SCROPHULARIACEAE
 89.1. Bacopa sp. Vicki-de-batata kidneys Infusion (I) 2 1 1 0.17
 89.2. Scoparia dulcis L. Vassorinha bladder wound healing, hearth, blood cleanser, diabetes, pain, bone fractures, swelling in pregnant woman, pneumonia, kidneys, syphilis, and cough Infusion (I) 81 7 12 1.50
90. SIMAROUBACEAE
 90.1. Simaba ferruginea A. St.-Hil. Calunga anemia, wound healing, diabetes, digestive, pain, stomach, obesity, ulcer, and worms Maceration (I) 31 7 9 1.30
 90.2. Simarouba versicolor A. St.-Hil. Pé-de-perdiz wound healing and uterine inflammation Decoction (I, E) 4 2 2 0.33
91. SIPARUNACEAE
 91.1. Siparuna guianensis Aubl. Negramina pain, fever, and flu Infusion (I) 20 2 3 0.40
92. SMILACACEAE
 92.1. Smilax aff. brasiliensis Spreng. Japecanga Column and rheumatism Infusion (I) 5 1 2 0.23
93. SOLANACEAE
 93.1. Capsicum sp. Pimenta Pain and hemorrhoids Infusion (I, E) 14 2 2 0.33
 93.2. Nicotiana tabacum L. Fumo thyroid Infusion (I, E) 2 1 1 0.17
 93.3. Physalis sp. Tomate-de-capote hepatitis Infusion (I) 1 1 1 0.17
 93.4. Solanum americanum Mill. Maria-pretinha worms Infusion (I) 3 1 1 0.17
 93.5. Solanum lycocarpum A. St.-Hil. Fruta-de-lobo Gastritis and ulcer Infusion and maceration (I) 6 1 2 0.23
 93.6. Solanum sp. Jurubeba column, stomach, and liver Infusion (I) 8 2 3 0.40
 93.7. Solanum sp. Urtiga boi Infusion (I) 1 1 1 0.17
 93.8. Solanum melongena L. Berinjela cholesterol Infusion and maceration (I) 2 1 1 0.17
 93.9. Solanum tuberosum L. Batata-inglesa Pain and gastritis Infusion and maceration (I, E) 13 2 2 0.33
 93.10. Solanum viarum Dunal. Joá-manso Hemorrhoids Infusion (I) 7 1 1 0.17
94. TILIACEAE
 94.1. Apeiba tibourbou Aubl. Jangadeira liver Decoction (I, E) 1 1 1 0.17
 94.2. Luehea divaricata Mart. Açoita-cavalo uric acid, column, blood cleanser, throat, flu, hemorrhoids, intestine, pneumonia, muscular relaxative, kidneys, cough, and tumors Decoction and syrup (I) 58 7 12 1.50
95. ULMACEAE
 95.1. Trema micrantha (L.) Blume Piriquiteira wound healing Decoction (I, E) 1 1 1 0.17
96. VERBENACEAE
 96.1. Casselia mansoi Schau Saúde-da-mulher thooth, blood cleanser, uterine inflammation, and menstruation Infusion (I) 9 3 4 0.57
 96.2. Duranta repens L. Pingo-de-ouro diabetes Infusion (I, E) 3 1 1 0.17
 96.3. Lantana camara L. Cambará cold and cough Decoction (I) 22 2 2 0.33
 96.4. Lippia alba (Mill.) N. E. Br. ex Britton & P. Wilson Erva-cidreira soothing hearth, thooth, blood cleanser, pain, flu, hypertension, tachycardia, and cough Infusion (I) 75 5 9 1.10
 96.5. Phyla sp. Chá-mineiro conjunctivitis, blood cleanser, pain, fever, muscular relaxative, rheumatism, and kidneys Infusion (I) 19 4 7 0.87
 96.6. Priva lappulacea (L.) Pers. Pega-pega Stomach and sinusitis Infusion (I) 2 2 2 0.33
 96.7. Stachytarpheta aff. cayennensis (Rich.) Vahl Gervão bronchitis blood cleanser, stomach, liver, bone fractures, gastritis, flu, constipation, relaxative muscular, cough, and worms Infusion (I) 80 6 11 1.33
 96.8. Stachytarpheta sp. Rabo-de-pavão relaxative muscular Infusion (I) 3 1 1 0.17
 96.9. Vitex cymosa Bert.ex Spregn. Tarumeiro blood cleanser, diarrhea, pain, and stomach Infusion (I) 8 3 4 0.57
97. VIOLACEAE
 97.1. Anchietea salutaris A. St.-Hil. Cipó-suma column, blood cleanser, fever, intoxication, and vitiligo Infusion (I) 18 4 5 0.73
 97.2. Hybanthus calceolaria (L.) Schulze-Menz. Poaia-branca cough Infusion (I) 1 1 1 0.17
98. VITACEAE
 98.1. Cissus cissyoides L. Insulina-de-ramo diabetes Infusion (I) 10 1 1 0.17
 98.2. Cissus gongylodes Burch. ex Baker Cipó-de-arráia relaxative muscular Infusion (I) 1 1 1 0.17
 98.3. Cissus sp. Rabo-de-arráia hypertension Infusion (I) 3 2 2 0.33
 98.4. Cissus sp. Sofre-do-rim-quem-quer inflammation uterina, relaxative muscular, and kidneys Infusion (I) 5 3 3 0.50
99. VOCHYSIACEAE
 99.1. Callisthene fasciculata Mart. Carvão-branco Hepatitis and icterus Decoction (I, E) 10 2 2 0.33
 99.2. Qualea grandiflora Mart. Pau-terra Diarrhea and pain Decoction (I, E) 5 2 2 0.33
 99.3. Qualea parviflora Mart. Pau-terrinha diarrhea 1 1 1 0.17
 99.4. Salvertia convallariodora A. St.-Hil. Capotão diarrhea, diuretic, hemorrhoids, and relaxative muscular Decoction (I, E) 4 4 4 0.67
 99.5. Vochysia cinnamomea Pohl Quina-doce flu 3 1 1 0.17
 99.6. Vochysia rufa Mart. Pau-doce blood cleanser, diabetes, diarrhea, laxative, obesity, kidneys, cough, and worms Decoction, Infusion (I, E) 25 6 8 1.13
100. LILIACEAE
 100.1. Aloe barbadensis Mill. Babosa Cancer, prostate cancer, wound healing, diabetes, stomach, bone fractures, gastritis, hepatitis, laxative, and rheumatism Syrup and maceration (I, E) 87 5 9 1.10
101. ZAMIACEAE
 101.1. Zamia boliviana (Brongn.) A. DC. Maquiné stomach Infusion (I) 2 1 1 0.17
102. ZINGIBERACEAE
 102.1. Alpinia speciosa (J. C. Wendl.) K. Schum. Colônia soothing hearth, fever, flu, and hypertension Infusion (I) 36 4 5 0.73
 102.2. Curcuma longa L. Açafrão column, diuretic, pain, stomach, and hepatitis Infusion and maceration (I) 18 4 5 0.73
 102.3. Zingiber officinale Roscoe Gengibre pain, flu, sinusitis, and cough Infusion and maceration (I) 26 2 4 0.47

I: Internal, E: External; NSC: Number of body systems treated by species; NCS: number of body systems. NP: Number of properties of the species; RI: Relative importance of the species.

3.1. Relative Importance (RI)

The RI of the species cited by 262 respondents from NSACD ranged from 0.17 to 1.87. A total of 261 species had RI ≤ 0.5; 80 species, RI from 0.51 to 1.0; 30 species, RI from 1.1 to 1.5, and 4 species with RI from 1.51 to 2.0, among the latter, three species were native to Brazil. The species with RI ≥ 1.5, were Himatanthus obovatus (Müll. Arg.) Woodson (1.87), Hibiscus sabdariffa L. (1.87), Solidago microglossa DC. (1.80), Strychnos pseudoquina A. St.-Hil. (1.73), Dorstenia brasiliensis Lam., Scoparia dulcis L., and Luehea divaricata Mart. (1.50 each), as shown in Table 4.

Table 4.

Species with the highest values of relative importance.

Family Species Application/citation RF RI
Apocynaceae Himatanthus obovatus (Müll. Arg.) Woodson anemia (1), wound healing (7), cholesterol (3), blood cleanser (9), pain (4), nose bleeding (1), hypertension (4), uterine inflammation (5), labyrinthitis (6), muscle relaxant (2), worms (1), vitiligo (1), and pneumonia (1) 45 1.87
Malvaceae Hibiscus sabdariffa L anxiety/heart (1), flu (1), tachycardia (1), kidneys (1), cramps (3), discharge (1), diarrhea (1), pain (1), inflammation uterine (2), labyrinthitis (3), snakebite (1), and pneumonia (2) 18 1.87
Asteraceae Solidago microglossa DC. wound healing (53), blood cleanser (11), pain (2), bone fractures (1), hypertension (1), uterine inflammation (3), muscle relaxant (6), kidneys (3), and worms (2) 82 1.8
Loganiaceae Strychnos pseudoquina A. St.-Hil. anemia (46), wound healing (3), cholesterol (1), blood cleanser (16), pain (13), stomach (3), bone fractures (1), flu (2), uterine inflammation (1), pneumonia (1), muscle relaxant (1), cough (10), ulcer (1), and worms (8) 107 1.73
Moraceae Dorstenia brasiliensis Lam. wound healing (1), colic (1), tooth ache (1), blood cleanser (4), dysentery (1), pain (7), flu (2), laxative (3), menstruation (1), pneumonia (6), relapse delivery (13), and kidneys (1) 41 1.5
Plantaginaceae Scoparia dulcis L. heart (6), blood cleanser (1), diabetes (1), pain (16), bone fractures (47), swelling in pregnant woman (4), pneumonia (1), kidneys, ( 1) syphilis (3), and cough (1) 55 1.5
Malvaceae Luehea divaricata Mart. uric acid (18), vertebral column (2), blood cleanser (1), throat (1), flu (1), hemorrhoids (7), intestine (1), pneumonia (8), muscle relaxant (2), kidneys (3), cough (10), and tumors (4) 58 1.5

RF: Relative frequency; RI: Relative importance of the species.

3.2. Informant Consensus Factor (ICF)

In the disease categories according to CID, 10th ed., we observed that ICF values ranged from 0.43 to 0.77, with the exception of disease category included in CID VI (diseases of the nervous system), which was 0.13. The ICF for CID VI ranged between 0.13 and 0.78 (mean = 0.62, SD = 0.16, 95% CI: 0.53–0.70). The highest consensus value obtained was for the category related to injuries, poisoning, and some other consequences of external causes (ICF = 0.78), with 65 species and 286 citations. Three species were more common, namely, S. dulcis and S. microglossa (“Brazilian arnica”), with 49 citations each and L. pacari (manga-brava) with 42 citations. The main ailments addressed in this category were inflammation, pain, and gastric disorders.

Out of 20 disease categories, there were citations for 18 therapeutic indications, as shown in Table 5.

Table 5.

Categories of diseases, indications, form of use, preparation and the informant consensus factor of the main medicinal plants from Nossa Senhora Aparecida do Chumbo District, Poconé, Mato Grosso, Brazil.

Disease category/CID, 10th ed. Medicinal plants Main indications Main forms of use Part utilized/ State of the plant Species/citations ICF
Injuries, poisoning, and certain other consequences of external causes— XIX Scoparia dulcis L. Solidago microglossa D. C Lafoensia pacari A. St.-Hil. inflammation and pain Inf, Dec, Mac, and Tin L, Wp, Rt (Fr, Dr) 65/286 0.78
Mental and behavioural disorders —V Chamomilla recutita (L.) Rauschert. soothing Dec and Inf L (In, Sc) 20/85 0.77
Symptoms, signs, and abnormal clinical and laboratory findings not elsewhere classified—XVIII Macrosiphonia longiflora (Desf.) Müll. Arg. blood depurative Inf, Dec, and Mac Rz (Fr, Dr) 176/713 0.75
Diseases of the genitourinary system —XIV Palicourea coriacea (Cham.) K. Schum. Kidneys and diuretic Inf, Dec, and Syr L (Fr, Dr) 132/533 0.75
Diseases of the digestive system—XI Plectranthus barbatus Andrews stomach, pain, liver, and malaise Dec, Inf, Mac, and Juc L (Fr, Dr) 113/428 0.74
Other infectious and parasitic diseases—I Chenopodium ambrosioides L. verminose Inf, Mac, and Juc L (Fr,Dr) 82/300 0.73
Diseases of the respiratory system—X Mentha pulegium L. flu, bronchitis, colds, and cough Dec, Inf, Mac, and Syr L (Fr, Dr) 88/303 0.71
Pregnancy, childbirth, and the puerperium—XV Dorstenia brasiliensis Lam. childbirth Dec, Inf, and Syr Rz (Fr, Dr) 9/28 0.70
Diseases of the circulatory system—IX Alpinia speciosa (J. C. Wendl.) K. Schum. Hypertension and heart Inf and Mac L (Fr, Dr) 56/180 0.69
Some disorders originating in the perinatal period—XVI Bidens pilosa L. Hepatitis and enteric Dec and Inf L (In, Sc) 3/7 0.67
Diseases of blood and blood forming organs and certain disorders involving the immune system—III Strychnos pseudoquina A. St.-Hil. anemia Inf, Mac, and Syr B (Fr, Dr) 15/38 0.62
Diseases of the eye and the surrounding structures—VII Malva sylvestris L. Discharge and conjuctivitis Inf and Tin L (Fr, Dr) 6/14 0.61
Diseases of endocrine of nutritional and metabolic origins—IV Cissus cissyoides L. diabetes Inf L (Fr, Dr) 47/109 0.57
Diseases of the ear and mastoid process—VIII Himatanthus obovatus (Müll. Arg.) Woodson labyrinthitis Inf L (Fr, Dr) 7/15 0.57
Diseases of musculoskeletal and connective tissue—XIII Solidago microglossa DC. bone fractures Dec, Inf, Mac, and Tin L (Fr, Dr) 70/146 0.52
Diseases of the skin and subcutaneous tissue—XII Dioscorea brasiliensis Willd. furuncules Dec, Inf, Mac, Tin, and Out Rz (Fr, Dr) 29/51 0.44
Neoplasia (tumors)—II Aloe barbadensis Mill. wound healing Dec, Inf, Mac, Tin, and Out L (Fr, Dr) 22/38 0.43
Diseases of the nervous system—VI Macrosiphonia longiflora (Desf.) Müll. Arg. leakage Inf 14/16 0.13

CID, 10th ed. categories of diseases in chapters according to International Classification of Diseases and Related Health Problems, 10th. edition [25]; ICF: informant consesus factor; Inf: infusion, Dec: decoction, Syr: syrup, Mac: maceration, Sal: salad, Tin: tinture, Juc: juice, Out: others (compression and bath). L: leave; Wp: whole plant; Rt: root; Rz: rhizome; B: bark. State of the plant: Fr: fresh; Dr: dried.

4. Discussion

In the present study, almost all the respondents (99%) claimed to know and use medicinal plants. Surveys conducted in other countries had reported values ranging from 42% to 98% depending on the region and country of the study [2527]. Due to the low level of knowledge of traditional medicine in national capitals, ethnobotanical surveys in many developing countries including Brazil, primarily prefer to evaluate small communities or rural hometowns, whose population having knowledge and practical experience with traditional medicine are proportionately higher (between 80 and 100%) [2830].

The high percentage of folk knowledge of medicinal plants identified in Brazil may be due to factors such as lower influence of the contemporary urban lifestyle and the strength of cultural traditions in the rural communities [31]. In fact, with the process of industrialization and migration to the cities, a significant part of traditional culture is maintained more in the communities farther from the metropolis via oral transmission of the knowledge of CAM and family traditions. Transmission and conservation of CAM knowledge is more pronounced in Brazil due to high degree of biodiversity.

One of the most important aspects of this research is the documentation of high number of taxa (285 genera and 102 families) and species (376) mentioned by the informants as medicinal. These findings confirmed the existence of the great diversity of plants used for therapeutic purpose and preserved traditional culture, as stated by Simbo [32]. It is worth mentioning here the presence of 8 (eight) local medicinal plant expert informants/healers among the 262 respondents in this study. These local expert informants/healers account for a significant number of citations (43 to 250) in this study. In Brazil, as in other countries, rural communities have developed knowledge about the medicinal and therapeutic properties of natural resources and have contributed to the maintenance and transmission of the ethnopharmacological knowledge within the communities.

The most representative plant families are Fabaceae (10.2%), Asteraceae (7.82%), and Lamiaceae (4.89%). These results are in accordance with other ethnobotanical surveys conducted in the tropical regions [33, 34] including Brazil [7, 35]. Furthermore, the results from our study are also in conformity with the findings of the most comprehensive ethnobotanical survey conducted by V. J. Pott and A. Pott in the Brazilian Pantanal region [19].

Featuring greater potential for bioprospecting are 231 (61.6%) species indicated for the treatment of at least two diseases, and RI between 0.17 and 1.87 (mean = 0.46, SD = 0.357, 95% CI: 0.4250–0.4973). The seven species with the highest RI were H. obovatus (Müll. Arg.) Woodson (13 therapeutic indications and RI = 1.87, H. sabdariffa L. (12 therapeutic indications and RI = 1.87); S. microglossa DC. (9 therapeutic indications and RI = 1.80) S. pseudoquina A. St. - Hil. (14 therapeutic indications and RI = 1.73) and D. brasiliensis Lam., S. dulcis L., and L. divaricata Mart. (12, 10, and 12 therapeutic indications respectively with RI = 1.50) (Table 4). For the sake of brevity, we will focus most of our discussion on these seven most cited medicinal plants highlighting the most important available literature on them and including L. pacari. It should be noted that although 146 (39%) species presented RI below 0.17, with just a single indication, they cannot be considered as of lower pharmacological potential or importance, because as Albuquerque et al. [36] have noted elsewhere, these may be species of recent introduction in the culture of the community under study but might have been validated by the customary use in other social groups.

A total of 105 different folkways, including 18 disease categories, according to Brasil [24], were codified as shown in Table 5. The highest frequencies in decreasing magnitude were indications for the treatment of pain and inflammation (10.8%), kidney disease (7.6%), and wound healing (6.8%). In part, these data can be explained by the characteristics of the informants (elderly, rural activity, low level of education, and poor sanitation at home) with higher frequency of chronic, inflammatory, and infectious diseases. In addition, the search for natural treatments for infected wounds is very common in populations of agrarian labor or menial worker as stated by Akerreta et al. [37]. As ICF values were generally close to 1.0, it may be presumed that there is certain homogeneity in knowledge of medicinal plants among the population of NSACD.

4.1. Literature Survey and Discussions on the Selected Species with Higher Relative Importance

Himatanthus obovatus, var. obovatus had the highest relative importance, being cited for 13 different ailments that fall into 11 categories of CID, 10th ed. with a total of 29 citations. The most commonly mentioned of these indications for this plant were its traditional use as a blood cleansing, wound healing, and other conditions associated with infections, which seems to point to its possible antibiotic activity. Indeed, some studies have demonstrated the in vitro activity of its different extracts against promastigotes of Leishmania donovani [38]. A few others also showed experimentally its antiviral, antitumor activities, cellular proliferation activities, and inflammatory and immune response [39, 40]. On the basis of these aforementioned, it is possible that its use in the folk medicine may be related to its ability to modulate the immune system, which may enhance physiological mechanisms involved in resolving inflammation, pain, and wound healing. We did not encounter any literature pertaining to its use in anemia, nosebleeding, muscle relaxant, deworming, or vitiligo treatment. Its indications as a blood cleansing and as antihypercholesterolemic are important targets for future biomedical research.

Hibiscus sabdariffa calyces are used in many parts of the world to make cold and hot drinks as well as in folk medicine [41]. Due to its many health-enhancing benefits, extensive works have been carried to validate its traditional therapeutic claims. In fact, its medicinal importance is widely acknowledged in many traditional herbal systems [42].

The benefits associated with the use of H. sabdariffa may in part be due to its high content of beneficial phytochemical constituents. These include alkaloids, L-ascorbic acid, anisaldehyde, anthocyanin, β-carotene, β-sitosterol, citric acid, cyanidin-3-rutinoside, delphinidin, galactose, gossypetin, hibiscetin, mucopolysaccharide, pectin, protocatechuic acid, polysaccharide, quercetin, stearic acid, and flavonoids [42, 43]. Studies have highlighted the role of polyphenol acids, flavonoids, and anthocyanins that may act as antioxidants or through other mechanisms that may contribute to its cardioprotective activity [44, 45].

In additions to folkloric use of H. sabdariffa noted in this study, other previous reports have indicated its use in the treatment of liver disease, hypocholesterolemic, antispasmodic, intestinal antiseptic, sedative, and as mild laxative [42, 46]. The most extensively studied is its antihypertensive activity. This effect was confirmed in several in vitro and animal studies [4749]. The hypotensive effect of H. sabdariffa and its constituents may be mediated, at least partially, by a cholinergic and/or histaminergic mechanism and it has been confirmed to act via inhibitiory action on angiotensin I converting enzyme, vasorelaxation [50], and diuretic action [51]. For detailed review on this aspect, see [41]. In addition to literature reports on the medicinal uses of this plant, we also report here its indications in the treatment of anxiety and labyrinthitis and as anti-snake venom. To the best of our knowledge, these indications remained to be proven experimentally.

In concordance with the traditional use of H. sabdariffa in the treatment of uterine inflammation and pain, its aqueous ethanol extract was shown experimentally to presents anti-inflammatory, uterine antispasmodic activities, and attenuation of intestinal spasm [5254]. In addition to its confirmed pharmacological activities, its antiobese/weight-reducing [50, 55], hepatoprotective [5658], anticancer [46, 59, 60], free-radical scavenging [61], antioxidant [42], immunomodulatory [62], lipid-lowering [43, 63] effects and attenuation of oxidants-mediated complications in diabetes [64] have been well documented. Besides, the plant extract is characterized by a very low degree of toxicity [41]. Moreover, apart from its medicinal uses, the plant seed oil was also shown to be a good source of lipidsoluble antioxidants, particularly γ-tocopherol, thus it could have important industrial applications [65].

Solidago microglossa is popularly known in Brazil as “arnica,” “arnica-do-mato,” “arnica-silvestre,” “erva-federal,” “arnica-vulgar,” “erva-lanceta,” and “rabo-de-rojão” [66]. It is usually confused with Arnica montana L., a native of the mountainous regions of Europe, due to the similarity in their medicinal flowers and having the same color (yellow), S. microglossa is not cultivated in Brazil due to it low adaptation to the tropical conditions [66]. In our study, S. microglossa was indicated for treatment of 15 different diseases corresponding to 8 classes of CID, 10th ed. and had a total of 49 citations. The key citations for this plant were its use in wound healing and blood cleansing. Other popular indications found in this study were similar to those previously reported, especially its use in the treatment of wounds, acne, bruises, and stomach-related ailments [67].

Several classes of compounds and metabolites have been isolated from S. microglossa, especially phenols, acetophenones, carotenoids, lactones (helenalin and dihydro-helenalin) [68, 69], flavonoids [70, 71] saponins [72], and polyacetylenes [70]. The cicatrizant activity of the plant's extract has been confirmed experimentally [73]. Although not mentioned directly by respondents in this study, some lines of evidence suggest important antibiotic activity with the use of S. microglossa, which can justify its indication for uterine inflammation. Morel et al. [74] showed that the essential oil of S. microglossa and three of its components (quercetrin, α-espinasterol, and solidagenone) are capable of significantly inhibiting the growth of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Escherichia coli, Salmonella setubal, Bacillus subtilis, Pseudomonas aeruginosa, Saccharomyces cerevisiae, and Candida albicans [74]. In addition, cicatrizant activity was observed with the administration of the plant's extract [73]. Its use in ameliorating renal ailments, blood cleansing, and hypotensive and antiparasitic activities may be associated with the presence in high concentrations of tannins [75, 76] and flavonoids in this species [7679]. Its indication for muscle relaxation may also derive from its antispasmodic effect [80]. Further studies are warranted in these regards.

Other pharmacological properties not mentioned here, but have been established in preclinical studies, include hypoglycemic effect [81] and antitumor activity. In fact, the latter effect has attracted intense interest in the discovery of new chemotherapeutic agents. The extract of S. microglossa demonstrated antiproliferative effect (but not mutagenic) against young shoot cells of onion (Allium cepa) strain [82]. Some of these activities may be related to the presence of secondary metabolites such as helenalin [83].

Although Strychnos pseudoquina is referred to locally as “quinas”, similar to the local name used for species such as Cinchona sp. (source of quinine), it has been shown to be inactive against Plasmodium berghei [84] contrary to its popular use in folk medicine elsewhere [84]. Theoretically, some of the indications may result from the classification bias in the community due to an erroneous popular cultural belief that plants referred to as “quinas” are useful for “anemic” patients infected with malaria parasite. This perhaps helps to explain why the highest indication for this plant in our study was to treat anemia.

Among the components isolated from S. pseudoquina metabolites are isoramnetin, strychnobiflavone, and 11-diaboline metoxidiaboline [85]. Silva et al. [86] demonstrated the gastroprotective effect of S. pseudoquina in models of gastric lesions induced by nonsteroidal anti-inflammatory agents and some necrotizing agents, thus confirming its indication for gastric ulcer and stomach disorders as noted in this present study. On the other hand, its indication in wound healing has not been experimentally confirmed at least in the diabetic wound model in rats [87] or in local hemorrhage induced by Bothrops jararaca venom [88]. Other medicinal uses indicated like “blood depurative” and analgesic effect may be subject of future investigation as a potential agent with antinociceptive and metabolic disorders ameliorating effects. Regarding its toxicity, Santos et al. [81] showed that only the methanol extract (but not dichloromethane) from the leaves of S. pseudoquina have mutagenic effect in Salmonella strains TA98 (−S9) and TA100 (+ S9, −S9) and that it induces formation of micronuclei after acute treatment [81].

Dorstenia brasiliensis, known as “Carapiá” is a perennial herb of the early geological point of view, typical of the fields in southern Brazil, Paraguay, Uruguay, and Argentina [89, 90]. Phytochemical analysis of roots of D. brasiliensis indicated the presence of dorstenic acid A and B (triterpenoids), isopimarane-type diterpenoid, and six different types of coumarins. The two triterpenoids showed moderate cytotoxicity against leukemia cells (L-1210 and HL-60) [91]. Furthermore, some authors have suggested that its use in cutaneow disease (such as psoriases and vitiligo) may be associated with the presence of furanocoumarins in the species of Dorstenia [92]. Bartericin A and B, stigmasterol, isobavachalcone, 4-hydroxylonchocarpin, dorsmanin F, 6,8-diprenyleridictyol, quercetin, quercitrin, amentoflavone [93], psoralen, bergapten (from rhizome), and umbelliferone [94] are some of the compounds isolated this medicinal plant.

Some few pharmacological studies have demonstrated analgesic and anti-inflammatory activities of D. brasiliensis in animal models [95]. These data corroborated the popular use of D. brasiliensis as an analgesic. There is dearth of information confirming its use in the popular medicine use as an anti-inflammatory agent. Moreover, D. brasiliensis may possesses some biologically active compounds similar to other Dorstenia species from the same genus and may thus share similar pharmacological profile. The following compounds and pharmacological activities have been reported in other Dorstenia species: chalcones (D. prorepens and D. zenkeri) [96], furocoumarins (D. bahiensis and D. bryoniifolia), triterpenes (D. bahiensis, D. bryoniifolia, D. carauntae, D. cayapiaa, and D. heringerii) [97]. This is a point to be noted for future research. Some authors have investigated its potential use as antivenom, antiinfective, anti-rheumatic [96, 97] while others established its antitrichomonal [93], antitussive [98], antioxidant [93, 99] and antileishmanial [100] activities.

Scoparia dulcis, popularly known as “vassourinha”, grows wild in backyards, gardens, and fields in Brazil. Phytochemical studies have identified the presence of more than 12 interesting pharmacologically active compounds in this species, namely, scoparic acid A [101], iso-dulcinol, 4-epi-scopadulcic acid B, dulcidiol, scopanolal, dulcinol/scopadulciol, scopadiol [102], scoparinol [103], scopadulcic acid B [104106], glutinol [107] and scopadulin [105]. Scopadulcic acid B inhibited the effects of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro and in vivo, and also suppressed the promoting effect of TPA on skin tumor formation, demonstrating stronger effect than antitumor-promoting terpenoids, such as glycyrrhetinic acid [104]. In fact, its cytotoxicity has been investigated against antitumor activity [102] and nerve growth factor-mediated neurite outgrowth and neurodegenerative disorders [103, 108].

The analgesic and anti-inflammatory activities of ethanol extracts of S. dulcis and glutinol have been demonstrated in writhing induced by acetic acid and carrageenan-induced paw edema, respectively [107]. However, S. dulcis extracts were ineffective in the central pain models (tail flick) and paw edema induced by dextran. Another secondary metabolite, scoparinol, also showed significant analgesic and anti-inflammatory activity [109]. In regard to its toxicological effects, it is worthwhile to mention that glutinol and scoparinol markedly potentiated pentobarbital-induced sedation and duration of sleeping time in these two studies mentioned above.

In contrast to its toxicity, S. dulcis seems to possess potential hepatoprotective activity in different models, which have been attributed to its free-radical scavenging potential activities [110113]. Corroborating with antibiotic use for some infections (like gonorrhea), some authors have investigated inhibition of multidrug resistance (MDR) bacteria, fungi [114, 115], leishmanial parasite [116], and herpes simplex virus type 1 growths [96].

Paradoxically, despite the low citation in gastric ulcer and diabetes treatments in this study, the antiulcer and antihyperglycemic activities of this species are well documented. Inhibitory activities of S. dulcis extracts was demonstrated in pylorus ligature model, histamine- or bethanechol-stimulated gastric secretion, and acute gastric lesions induced by indomethacin [117, 118]. S. dulcis was also demonstrated to inhibit both proton pump (H+, K+-ATPase) and proton transport into gastric vesicles [105]. In regard to its antihyperglycemic effect, experimental evidences demonstrated that S. dulcis extracts reduced blood glucose, glycosylated haemoglobin, prevented decrease in the body weight, and improved glucose tolerance similarly with glibenclamide [119]. Even in the insulin resistance stage, S. dulcis-treated L6 myotubes were found to be more capable of stimulating glucose transport than insulin treatment [120]. In addition, scoparic acid D was able to stimulate insulin secretion and receptor binding in streptozotoci- (STZ-) induced diabetic rats [121].

Luehea divaricata is a native tree of the Brazilian Cerrado popularly known as “açoita-cavalo”. Just as popularly indicated, some studies have reported the following pharmacological activities of L. divaricata: the leaves as used as diuretic, the stems as anti-inflammatory, the bark and aerial parts are used for healing skin wounds, pimples, and for vaginal washes [122, 123].

Phytochemical screening of L. divaricata reported the presence of flavonoids, tannins and saponins and afforded the presence of 3b-p-hydroxybenzoyl-tormentic acid [124], maslinic acid [122], vitexin and glucopyranosylsitosterol, and (−)-epicatechin [123].

The presence of flavonoids and metabolites such as the vitexin [125, 126] and maslinic acid [127, 128] may be associated with the popular indication of its anti-inflammatory properties formation of urate (18) and antitumor (4). Extracts of L. divaricata has been shown to have antioxidant activity and analgesic property [129], lack toxicity in vivo [130], or mutagenicity [131]. Its extract also showed cytotoxicity against tumor cell lines [123]. Due to the high level of citation for the treatment of urate aleviation (18), we believe that its antigout or uricosuric activity may be an important target of pharmacological interest. Another indication prominently cited by the respondents is the use of L. divaricata in the treatment of lung diseases and upper airway. However, there is no scientific evidence on its regulatory activity on cough, while its antibiotic properties also vary. Some authors have demonstrated its inhibitory effect on the growth of dermatophytes [132] but not in other fungi species [123, 129]. In addition, the extract of L. divaricata was shown to strongly inhibit the growth of S. aureus, S. epidermitis, K. pneumonia, and E. coli in a study [129] but showed only moderately in another study elsewhere [123].

It is worth mentioning that although Lafoensia pacari A.St.-Hil. had low relative importance value, all the same, it is among the three plants with the highest informant consesus factor in addition to being a native plant in the region. The other two (S. dulcis and S. microglossa) have been discussed previously.

L. pacari popularly called “mangava-brava”, belongs to the family Lythraceae, is a tree native to the Brazilian Cerrado [133]. It is commonly used for gastrointestinal disorders, wound healing, diarrhea, and kidney problems. In our study, it was referenced for the treatment of seven disorders distributed into five classes of CID, 10th ed. Preliminary phytochemical studies of methanol extract of the stem bark of L. pacari revealed the presence of free steroids, saponins, tannins catechins, pyrogalic tannins (in particular, ellagic acid), triterpenoids, simple phenols, strong and weak fixed acids, alkali, and quaternary amino acids [134136]. Acute toxicity studies or subchronic oral administration of extracts of L. pacari did not indicate any harmful effects [137]. However, it is also indicated for its adverse reactions and used as an abortifacient, diarrheic, weight loss, and tachycardia. Among the 42 citations for L. pacari, 29 were for the treatment of ulcer, and four and two for gastritis and stomach, respectively. These indications have been confirmed with the use of methanol crude extract of L. pacari and its major active components, ellagic acid, in different experimental ulcer models [138143]. In addition, the antiulcer activity of the methanol extract (capsules) of L. pacari was confirmed in the clinical trial with 55 patients with dyspepsia [144].

We did not encounter any studies concerning its activities in wound healing, antidiarrheal or alleviation of kidney disorders. This phenomenon of plant selection by local people for certain indications may be, for instance, to consolidate best practice of the medicinal properties of the plants at the expense of using other plants substitute for these indications. In fact, the broad community access to Amazon or Pantanal biome, and the close relationship with the indigenous native populations, promotes a variety of possibilities of ethnobotanical indications. Examples of other popular uses of L. pacari that have been experimentally confirmed includes weight loss [145], anorectic effect [142], antipyretic activity [146], anti-inflammatory [147], antiallergic [148], and analgesic property [149].

It is also worth mentioning other studies focused on the medicinal uses of L. pacari, including its potent antifungal activity [150], have demonstrated that the main compound responsible is found in the methanol extract of this plant. A patent application of lotion with the infusion prepared from the leaves of L. pacari, as a component of the formulation was also solicited [151]. To the best of our knowledge, there is currently no available literature concerning its claims as wound healing, antidiarrheal, or in kidney disorders.

5. Conclusions

The present study identified the several plant species and their medicinal uses in NSACD highlighting significant cultural diversity in the Pantanal region. In fact, one of the important components of this community is the contribution of Amerindian culture, which highlights its importance in the identification of indigenous popular knowledge relevance in the identification of native popular knowledge.

Analytically, the data were categorized according to the highest values of relative importance and consensus among informants, ensuring the best evidence for ethnobotanical bioprospecting of medicinal plants. Thus, we identified seven native species with the highest relative importance, which are H. obovatus, H. sabdariffa, S. microglossa, S. pseudoquina and D.brasiliensis, S. dulcis, and L. divaricata including L. pacari. The three plants with the highest value of consensus among informants were S. dulcis, S. microglossa, and L. pacari.

The preservation of local culture, the practice of traditional medicinal plant species themselves represent important strategies for sustenance of popular knowledge of CAM in the local systems of health care and environmental education. Moreover, ethnobotanical and pharmacological studies provide information essential for guidance in bioprospecting for new drugs of plant origin in the consolidation of therapeutic practices of the community.

Acknowledgments

The authors thank all the informants and staffs of Family Health Programme of NSACD, for the assistance and contributions made throughout ethnobotanical fieldwork, FAPEMAT and CNPq for granting scholarships, researcher, Dr. Rosilene Rodrigues Silva, UFMT Herbarium and Vali Joana Pott (MSc.) of CGMS Herbarium of Federal University of Mato Grosso do Sul, Campo Grande, for technical assistance in identification of plant species, National Institute for Science and Technology in Wetlands (INAU), National Council for Scientific and Technological Development CNPq/MCT, and Pantanal Research Center (CPP) for funding the research work.

References

  • 1.OMS. Organización Mundial DE La Salud. Estrategia de la OMS sobre medicina tradicional 2002–2005. Geneva, Switzerland: OMS; 2002. [Google Scholar]
  • 2.Brasil. Ministério da Saúde. Portaria nº 971. Aprova a Política Nacional de Práticas Integrativas e Complementares no SUS. Diário Oficial [da] República Federativa do Brasil, Poder Executivo, Brasília, DF, 2006.
  • 3.Cakilcioglu U, Turkoglu I. An ethnobotanical survey of medicinal plants in Sivrice. Journal of Ethnopharmacology. 2010;132(1):165–175. doi: 10.1016/j.jep.2010.08.017. [DOI] [PubMed] [Google Scholar]
  • 4.Brasil. Flora, vegetação, etnobotânica-conservação de recursos vegetais no pantanal. Cuiabá, 2006.
  • 5.Mato Grosso. Plano plurianual 2004–2007 do Governo do Estado. Projeto de lei. Seplan, MT. 2005.
  • 6.Amorozo MCM. Uso e diversidade de plantas medicinais em Santo Antônio do Leverger, MT. Acta Botanica Brasílica. 2002;16(2):189–203. [Google Scholar]
  • 7.Guarim Neto G. O saber tradicional pantaneiro: as plantas medicinais e a Educação Ambiental. REMEA. Julho a dezembro, FURG/PPGEA. 2006.
  • 8.Diegues ACD. O Mito Moderno da Natureza Intocada. São Paulo, Brazil: Hucitec; 1998. [Google Scholar]
  • 9.Poconé. Plano Municipal de Saúde de Poconé. Prefeitura Muncipal de Poconé. Secretaria municipal de Saúde. Poconé – MT, 2010.
  • 10.Scheaffer RL, Mendnhall W, Ott L. Elementos de Muestreo. México: Editora Iberoamericana; 1987. [Google Scholar]
  • 11.Bolfarine H, Bussab WO. Elementos de amostragem. São Paulo, Brazil: Edgar Blucher; 2005. [Google Scholar]
  • 12.Brasil. Ministério do Desenvolvimento, Indústria e Comércio. Sistema Aliceweb: informações sobre o comércio exterior brasileiro. Brasília, 2007.
  • 13.Levy PS, Lemeshow S. Sampling of populations. Methods and Applications. New York, NY, USA: John Wiley & Sons; 2008. [Google Scholar]
  • 14.Pio Correa M. Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Instituto Brasileiro de Desenvolvimento Florestal, IBDF, Rio de Janeiro, 6 v.il. 1926–1969.
  • 15.Diegues AC. Etnoconservação na natureza: enfoques alternativos. In: Diegues AC, editor. Etnoconservação, novos rumos para a conservação da natureza nos trópicos. São Paulo, Brazil: Hucitec Nupaub-USP; 2000. pp. 1–46. [Google Scholar]
  • 16.Borba AM, Macedo M. Medicinal plants used for oral health in the Santa Cruz neighborhood, Chapada dos Guimarães, Mato Grosso State, Brazil. Acta Botanica Brasilica. 2006;20(4):771–782. [Google Scholar]
  • 17.Pasa MC, Soares JJ, Guarim Neto G. Estudo etnobotânico na comunidade de Conceição-Açu (alto da bacia do rio Aricá Açu, MT, Brasil) Acta Botanica Brasilica. 2004;19(2):195–207. [Google Scholar]
  • 18.De La Cruz MG. Plantas Medicinais de Mato Grosso-A Farmacopéia Popular dos Raizeiros. Ed. Carlini e Caniato Editorial; 2008. [Google Scholar]
  • 19.Pott VJ, Pott A. Plantas do Pantanal. Brasília, Brazil: EMBRAPA-CPAP; 1994. [Google Scholar]
  • 20.Cronquist A. The evolution classification of flowering plants. 2nd edition. New York, NY, USA: The New York Botanical Garden; 1988. [Google Scholar]
  • 21.Missouri Botanical Garden - MOBOT. April 2010, http://www.tropicos.org/
  • 22.Bennett BC, Prance GT. Introduced plants in the indigenous pharmacopoeia of northern South America. Economic Botany. 2000;54(1):90–102. [Google Scholar]
  • 23.de Oliveira GL, de Oliveira AFM, Andrade LHC. Medicinal plants used in the urban community of Muribeca, Northeast Brazil. Acta Botanica Brasilica. 2010;24(2):571–577. [Google Scholar]
  • 24.Brasil. Classificação Internacional de Doenças e de Problemas Relacionados a Saúde. Décima Revisão – CID-10, DATASUS. 2008.
  • 25.Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey. Journal of the American Medical Association. 1998;280(18):1569–1575. doi: 10.1001/jama.280.18.1569. [DOI] [PubMed] [Google Scholar]
  • 26.Taddei-Bringas GA, Santillana-Macedo MA, Romero-Cancio JA, Romero-Téllez MB. Acceptance and use of therapeutic medical plants in family medical care. Salud Publica de Mexico. 1999;41(3):216–220. [PubMed] [Google Scholar]
  • 27.Bekalo TH, Woodmatas SD, Woldemariam ZA. An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional state, Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2009;5, article no. 26 doi: 10.1186/1746-4269-5-26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Bieski IGC. Plantas Medicinais e Aromáticas no Sistema Único de Saúde da Região Sul de Cuiabá-MT. Lavras Minas Gerais – Brazil: Secretaria Municipal de Saúde de Cuiabá-MT; 2005. [Google Scholar]
  • 29.Vendruscolo GS, Mentz LA. Study of use citations agreement and importance of medicinal used species and families to the community of Ponta Grossa neighborhood, Porto Alegre, Rio Grande do Sul State, Brazil. Acta Botanica Brasilica. 2006;20(2):367–382. [Google Scholar]
  • 30.Santos EB, Dantas GS, Santos HB, Melo Diniz MFF, Sampaio FC. Etnobotanical studies of medicinal plants for oral conditions in the municipality of João Pessoa, Brazil. Brazilian Journal of Pharmacognosy. 2009;19(1B):321–324. [Google Scholar]
  • 31.Upadhyay B, Parveen, Dhaker AK, Kumar A. Ethnomedicinal and ethnopharmaco-statistical studies of Eastern Rajasthan, India. Journal of Ethnopharmacology. 2010;129(1):64–86. doi: 10.1016/j.jep.2010.02.026. [DOI] [PubMed] [Google Scholar]
  • 32.Simbo DJ. An ethnobotanical survey of medicinal plants in Babungo, Northwest Region, Cameroon. Journal of Ethnobiology and Ethnomedicine. 2010;6, article no. 8 doi: 10.1186/1746-4269-6-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Polhill RM. Papilionoideae. In: Polhill RM, Raven PH, editors. Advances in Legume Systematics I. Royal Botanic Gardens, Kew; 1981. pp. 191–208. [Google Scholar]
  • 34.Lewis G, Schrire B, MacKinder B, Lock M, editors. Legumes of the World. UK: Royal Botanical Gardens, Kew; 2005. [Google Scholar]
  • 35.Pilla MAC, Amorozo MCDM, Furlan A. Acquisition and use of medicinal plants in Martim Francisco district, Mogi Mirim Municipality, São Paulo State, Brazil. Acta Botanica Brasilica. 2006;20(4):789–802. [Google Scholar]
  • 36.Albuquerque UP, et al. Evaluating two quantitative ethnobotanical Techniques. Ethnobotany Research and Applications. 2006;4:051–060. [Google Scholar]
  • 37.Akerreta S, Cavero RY, López V, Calvo MI. Analyzing factors that influence the folk use and phytonomy of 18 medicinal plants in Navarra. Journal of Ethnobiology and Ethnomedicine. 2007;3, article no. 16 doi: 10.1186/1746-4269-3-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.De Mesquita ML, Desrivot J, Bories C, et al. Antileishmanial and trypanocidal activity of Brazilian Cerrado plants. Memorias do Instituto Oswaldo Cruz. 2005;100(7):783–787. doi: 10.1590/s0074-02762005000700019. [DOI] [PubMed] [Google Scholar]
  • 39.Tan GT, Lee S, Lee IS, et al. Natural-product inhibitors of human DNA ligase I. Biochemical Journal. 1996;314(3):993–1000. doi: 10.1042/bj3140993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Vlietinck AJ, De Bruyne T, Apers S, Pieters LA. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Medica. 1998;64(2):97–109. doi: 10.1055/s-2006-957384. [DOI] [PubMed] [Google Scholar]
  • 41.Ali BH, Al Wabel N, Blunden G. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review. Phytotherapy Research. 2005;19(5):369–375. doi: 10.1002/ptr.1628. [DOI] [PubMed] [Google Scholar]
  • 42.Hirunpanich V, Utaipat A, Morales NP, et al. Antioxidant effects of aqueous extracts from dried calyx of hibiscus sabdariffa Linn. (roselle) in vitro using rat low-density lipoprotein (LDL) Biological and Pharmaceutical Bulletin. 2005;28(3):481–484. doi: 10.1248/bpb.28.481. [DOI] [PubMed] [Google Scholar]
  • 43.Carvajal-Zarrabal O, Waliszewski SM, Barradas-Dermitz DM, et al. The consumption of Hibiscus sabdariffa dried calyx ethanolic extract reduced lipid profile in rats. Plant Foods for Human Nutrition. 2005;60(4):153–159. doi: 10.1007/s11130-005-9023-x. [DOI] [PubMed] [Google Scholar]
  • 44.Crawford RS, Kirk EA, Rosenfeld ME, LeBoeuf RC, Chait A. Dietary antioxidants inhibit development of fatty streak lesions in the LDL receptor-deficient mouse. Arteriosclerosis, Thrombosis, and Vascular Biology. 1998;18(9):1506–1513. doi: 10.1161/01.atv.18.9.1506. [DOI] [PubMed] [Google Scholar]
  • 45.Rimm EB, Stampfer MJ. Antioxidants for vascular disease. Medical Clinics of North America. 2000;84(1):239–249. doi: 10.1016/s0025-7125(05)70216-9. [DOI] [PubMed] [Google Scholar]
  • 46.Hou DX, Tong X, Terahara N, Luo D, Fujii M. Delphinidin 3-sambubioside, a Hibiscus anthocyanin, induces apoptosis in human leukemia cells through reactive oxygen species-mediated mitochondrial pathway. Archives of Biochemistry and Biophysics. 2005;440(1):101–109. doi: 10.1016/j.abb.2005.06.002. [DOI] [PubMed] [Google Scholar]
  • 47.Mojiminiyi FBO, Dikko M, Muhammad BY, et al. Antihypertensive effect of an aqueous extract of the calyx of Hibiscus sabdariffa. Fitoterapia. 2007;78(4):292–297. doi: 10.1016/j.fitote.2007.02.011. [DOI] [PubMed] [Google Scholar]
  • 48.Haji Faraji M, Haji Tarkhani AH. The effect of sour tea (Hibiscus sabdariffa) on essential hypertension. Journal of Ethnopharmacology. 1999;65(3):231–236. doi: 10.1016/s0378-8741(98)00157-3. [DOI] [PubMed] [Google Scholar]
  • 49.Herrera-Arellano A, Flores-Romero S, Chávez-Soto MA, Tortoriello J. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial. Phytomedicine. 2004;11(5):375–382. doi: 10.1016/j.phymed.2004.04.001. [DOI] [PubMed] [Google Scholar]
  • 50.Sarr M, Ngom S, Kane MO, et al. In vitro vasorelaxation mechanisms of bioactive compounds extracted from Hibiscus sabdariffa on rat thoracic aorta. Nutrition and Metabolism. 2009;6, article no. 45 doi: 10.1186/1743-7075-6-45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Prasongwatana V, Woottisin S, Sriboonlue P, Kukongviriyapan V. Uricosuric effect of Roselle (Hibiscus sabdariffa) in normal and renal-stone former subjects. Journal of Ethnopharmacology. 2008;117(3):491–495. doi: 10.1016/j.jep.2008.02.036. [DOI] [PubMed] [Google Scholar]
  • 52.Dafallah AA, Al-Mustafa Z. Investigation of the anti-inflammatory activity of acacia nilotica and hibiscus sabdariffa. American Journal of Chinese Medicine. 1996;24(3-4):263–269. doi: 10.1142/S0192415X96000323. [DOI] [PubMed] [Google Scholar]
  • 53.Beltran-Debon. The aqueous extract of Hibiscus sabdariffa calices modulates the production of monocytechemo attractant protein-1 in humans. Phytomedicine. 2010;17:186–191. doi: 10.1016/j.phymed.2009.08.006. [DOI] [PubMed] [Google Scholar]
  • 54.Kao E-S, Hsu J-D, Wang C-J, Yang S-H, Cheng S-Y, Lee H-J. Polyphenols extracted from hibiscus sabdariffa L. inhibited lipopolysaccharide-induced inflammation by improving antioxidative conditions and regulating cyclooxygenase-2 expression. Bioscience, Biotechnology and Biochemistry. 2009;73(2):385–390. doi: 10.1271/bbb.80639. [DOI] [PubMed] [Google Scholar]
  • 55.Carvajal-Zarrabal O, Hayward-Jones PM, Orta-Flores Z, et al. Effect of hibiscus sabdariffa L. dried calyx ethanol extract on fat absorption-excretion, and body weight implication in rats. Journal of Biomedicine and Biotechnology. 2009;2009:5 pages. doi: 10.1155/2009/394592. Article ID 394592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Ali BH, Mousa HM, El-Mougy S. The effect of a water extract and anthocyanins of Hibiscus sabdariffa L. on paracetamol-induced hepatoxicity in rats. Phytotherapy Research. 2003;17(1):56–59. doi: 10.1002/ptr.1084. [DOI] [PubMed] [Google Scholar]
  • 57.Tseng TH, Kao ES, Chu CY, Chou FP, Lin Wu HW, Wang CJ. Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat primary hepatocytes. Food and Chemical Toxicology. 1997;35(12):1159–1164. doi: 10.1016/s0278-6915(97)85468-3. [DOI] [PubMed] [Google Scholar]
  • 58.Liu JY, Chen CC, Wang WH, Hsu JD, Yang MY, Wang CJ. The protective effects of Hibiscus sabdariffa extract on CCl 4-induced liver fibrosis in rats. Food and Chemical Toxicology. 2006;44(3):336–343. doi: 10.1016/j.fct.2005.08.003. [DOI] [PubMed] [Google Scholar]
  • 59.Chang YC, Huang HP, Hsu JD, Yang SF, Wang CJ. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells. Toxicology and Applied Pharmacology. 2005;205(3):201–212. doi: 10.1016/j.taap.2004.10.014. [DOI] [PubMed] [Google Scholar]
  • 60.Lin HH, Chen JH, Kuo WH, Wang CJ. Chemopreventive properties of Hibiscus sabdariffa L. on human gastric carcinoma cells through apoptosis induction and JNK/p38 MAPK signaling activation. Chemico-Biological Interactions. 2007;165(1):59–75. doi: 10.1016/j.cbi.2006.10.011. [DOI] [PubMed] [Google Scholar]
  • 61.Farombi EO, Fakoya A. Free radical scavenging and antigenotoxic activities of natural phenolic compounds in dried flowers of Hibiscus sabdariffa L. Molecular Nutrition and Food Research. 2005;49(12):1120–1128. doi: 10.1002/mnfr.200500084. [DOI] [PubMed] [Google Scholar]
  • 62.Fakeye TO, Pal A, Bawankule DU, Khanuja SPS. Immunomodulatory effect of extracts of Hibiscus sabdariffa L. (family malvaceae) in a mouse model. Phytotherapy Research. 2008;22(5):664–668. doi: 10.1002/ptr.2370. [DOI] [PubMed] [Google Scholar]
  • 63.Yang MY, Peng CH, Chan KC, Yang YIS, Huang CN, Wang CJ. The hypolipidemic effect of Hibiscus sabdariffa polyphenols via inhibiting lipogenesis and promoting hepatic lipid clearance. Journal of Agricultural and Food Chemistry. 2010;58(2):850–859. doi: 10.1021/jf903209w. [DOI] [PubMed] [Google Scholar]
  • 64.Huang CN, Chan KC, Lin WT, Su SL, Wang CJ, Peng CH. Hibiscus sabdariffa inhibits vascular smooth muscle cell proliferation and migration induced by high glucoses-A mechanism involves connective tissue growth factor signals. Journal of Agricultural and Food Chemistry. 2009;57(8):3073–3079. doi: 10.1021/jf803911n. [DOI] [PubMed] [Google Scholar]
  • 65.Mohamed R, Fernández J, Pineda M, Aguilar M. Roselle (Hibiscus sabdariffa) seed oil is a rich source of γ-tocopherol. Journal of Food Science. 2007;72(3):S207–S211. doi: 10.1111/j.1750-3841.2007.00285.x. [DOI] [PubMed] [Google Scholar]
  • 66.Lorenzi HF, Matos FJA. Plantas Medicinais do Brasil, nativas e exóticas. 1st edition. São Paulo, Brazil: Plantarum; 2008. [Google Scholar]
  • 67.Lorenzi H. Plantas medicinais no Brasil: nativas e exóticas cultivadas. Nova Odessa, Brazil: Instituto Plantarum; 2000. [Google Scholar]
  • 68.Corrêa AD, Siqueira-Batista R, Quintas LEM. Plantas Medicinais – do Cultivo à Terapêutica-Rio de Janeiro. Editora Vozes; 1998. [Google Scholar]
  • 69.Matos FJA. Plantas da medicina popular do Nordeste. Fortaleza. Edições UFC; 1999. [Google Scholar]
  • 70.Tiansheng L, Menelaou MA, Vargas D, Fronczek FR, Fischer NH. Polyacetylenes and diterpenes from Solidago canadensis Phytochemistry. The International Journal of Plant Biochemistry. 1993;32(6):1483–1488. [Google Scholar]
  • 71.Reznicek G, Jurenitsch J, Plasun M, et al. Four major saponins from Solidago canadensis. Phytochemistry. 1991;30(5):1629–1633. doi: 10.1016/0031-9422(91)84222-e. [DOI] [PubMed] [Google Scholar]
  • 72.Reznicek G, Jurenitsch J, Michl G, Haslinger E. The first structurally confirmed saponin from solidago gigantea: structure elucidation by modern NMR techniques. Tetrahedron Letters. 1989;30(31):4097–4100. [Google Scholar]
  • 73.Neto MAF, Fagundes DJ, Beletti ME, Novo NF, Juliano Y, Penha-Silva N. Systemic use of Solidago microglossa DC in the cicatrization of open cutaneous wounds in rats. Brazilian Journal of Morphological Sciences. 2004;21:204–210. [Google Scholar]
  • 74.Morel AF, Dias GO, Porto C, Simionatto E, Stuker CZ, Dalcol II. Antimicrobial activity of extractives of Solidago microglossa. Fitoterapia. 2006;77(6):453–455. doi: 10.1016/j.fitote.2006.05.006. [DOI] [PubMed] [Google Scholar]
  • 75.Hoste H, Jackson F, Athanasiadou S, Thamsborg SM, Hoskin SO. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends in Parasitology. 2006;22(6):253–261. doi: 10.1016/j.pt.2006.04.004. [DOI] [PubMed] [Google Scholar]
  • 76.Yokozawa T, Nakagawa T, Lee KI, Cho EJ, Terasawa K, Takeuchi S. Effects of green tea tannin on cisplatin-induced nephropathy in LLC-PK1 cells and rats. Journal of Pharmacy and Pharmacology. 1999;51(11):1325–1331. doi: 10.1211/0022357991776912. [DOI] [PubMed] [Google Scholar]
  • 77.Grassi D, Desideri G, Croce G, Tiberti S, Aggio A, Ferri C. Flavonoids, vascular function and cardiovascular protection. Current Pharmaceutical Design. 2009;15(10):1072–1084. doi: 10.2174/138161209787846982. [DOI] [PubMed] [Google Scholar]
  • 78.Huang Y, Yao XQ, Tsang SY, Lau CW, Chen ZY. Role of endothelium/nitric oxide in vascular response, to flavonoids and epicatechin. Acta Pharmacologica Sinica. 2000;21(12):1119–1124. [PubMed] [Google Scholar]
  • 79.Van Den Broucke CO, Lemli JA. Spasmolytic activity of the flavonoids from Thymus vulgaris. Pharmaceutisch Weekblad - Scientific Edition. 1983;5(1):9–14. doi: 10.1007/BF01959645. [DOI] [PubMed] [Google Scholar]
  • 80.Kissmam KG, Groth D. Plantas infestantes e nocivas. 2nd edition. Vol. 2. São Paulo, Brazil: BASF; 1999. [Google Scholar]
  • 81.Santos FV, Colus IMS, Silva MA, Vilegas W, Varanda EA. Assessment of DNA damage by extracts and fractions of Strychnos pseudoquina, a Brazilian medicinal plant with antiulcerogenic activity. Food and Chemical Toxicology. 2006;44(9):1585–1589. doi: 10.1016/j.fct.2006.03.012. [DOI] [PubMed] [Google Scholar]
  • 82.Bagatini MD, Fachinetto JM, Da Silva ACF, Tedesco SB. Cytotoxic effects of infusions (tea) of Solidago microglossa DC. (Asteraceae) on the cell cycle of Allium cepa. Brazilian Journal of Pharmacognosy. 2009;19(2B):632–636. [Google Scholar]
  • 83.Boulanger D, Brouillette E, Jaspar F, et al. Helenalin reduces Staphylococcus aureus infection in vitro and in vivo. Veterinary Microbiology. 2007;119(2–4):330–338. doi: 10.1016/j.vetmic.2006.08.020. [DOI] [PubMed] [Google Scholar]
  • 84.Andrade-Neto VF, Brandão MGL, Stehmann JR, Oliveira LA, Krettli AU. Antimalarial activity of Cinchona-like plants used to treat fever and malaria in Brazil. Journal of Ethnopharmacology. 2003;87(2-3):253–256. doi: 10.1016/s0378-8741(03)00141-7. [DOI] [PubMed] [Google Scholar]
  • 85.Nicoletti M, Goulart MOF, De Lima RA, Goulart AE, Delle Monache F, Bettolo GBM. Flavonoids and alkaloids from Strychnos pseudoquina. Journal of Natural Products. 1984;47(6):953–957. doi: 10.1021/np50036a007. [DOI] [PubMed] [Google Scholar]
  • 86.Aparecido Da Silva M, Murino Rafacho BP, Hiruma-Lima CA, et al. Evaluation of Strychnos pseudoquina St. Hil. leaves extract on gastrointestinal activity in mice. Chemical and Pharmaceutical Bulletin. 2005;53(8):881–885. doi: 10.1248/cpb.53.881. [DOI] [PubMed] [Google Scholar]
  • 87.Honorio-Franca AC, Marins CM, Boldrini F, Franca EL. Evaluation of hypoglicemic activity and healing of extract from amongst bark of "Quina do Cerrado" (Strychnos pseudoquina ST. HILL) Acta Cirurgica Brasileira. 2008;23:504–510. doi: 10.1590/s0102-86502008000600007. [DOI] [PubMed] [Google Scholar]
  • 88.Nishijima CM, Rodrigues CM, Silva MA, Lopes-Ferreira M, Vilegas W, Hiruma-Lima CA. Anti-hemorrhagic activity of four brazilian vegetable species against Bothrops jararaca venom. Molecules. 2009;14(3):1072–1080. doi: 10.3390/molecules14031072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Noll IB. Isolamento, identificação e doseamento de furanocumarinas. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1984. M.S. thesis. [Google Scholar]
  • 90.Simões CMO, et al. Plantas da medicina popular do Rio Grande do Sul. Porto Alegre: Editora da Universidade; 1996. [Google Scholar]
  • 91.Uchiyama T, Hara S, Makino M, Fujimoto Y. seco-adianane-type triterpenoids from Dorstenia brasiliensis (moraceae) Phytochemistry. 2002;60(8):761–764. doi: 10.1016/s0031-9422(02)00180-2. [DOI] [PubMed] [Google Scholar]
  • 92.Cardoso CAL, Vilegas W, Barison A, Honda NK. Simultaneous determination of furanocoumarins in infusions and decoctions from "Carapiá" (Dorstenia species) by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry. 2002;50(6):1465–1469. doi: 10.1021/jf0107095. [DOI] [PubMed] [Google Scholar]
  • 93.Omisore NOA, Adewunmi CO, Iwalewa EO, et al. Antitrichomonal and antioxidant activities of Dorstenia barteri and Dorstenia convexa. Brazilian Journal of Medical and Biological Research. 2005;38(7):1087–1094. doi: 10.1590/s0100-879x2005000700012. [DOI] [PubMed] [Google Scholar]
  • 94.Garcia CM. Estudo fitoquímico e atividade biológica de Pavonia distinguenda A.ST.- HILL. et NAUDIN E Dorstenia brasiliensis LAM. Universidade Federal de Santa Maria - RS; 2007. Ph.D. thesis. [Google Scholar]
  • 95.Ruppelt BM, Pereira EF, Gonçalves LC, Pereira NA. Pharmacological screening of plants recommended by folk medicine as anti-snake venom—I. Analgesic and anti-inflammatory activities. Memorias do Instituto Oswaldo Cruz. 1991;86:203–205. doi: 10.1590/s0074-02761991000600046. [DOI] [PubMed] [Google Scholar]
  • 96.Abegaz BM, Ngadjui BT, Dongo E, Ngameni B, Nindi MN, Bezabih M. Chalcones and other constituents of Dorstenia prorepens and Dorstenia zenkeri. Phytochemistry. 2002;59(8):877–883. doi: 10.1016/s0031-9422(01)00483-6. [DOI] [PubMed] [Google Scholar]
  • 97.Vilegas JHY, Lanças FM, Vilegas W, Pozetti GL. Further triterpenes, steroids and furocoumarins from Brazilian medicinal plants of Dorstenia genus (Moraceae) Journal of the Brazilian Chemical Society. 1997;8(5):529–535. [Google Scholar]
  • 98.De Fátima Agra M, De Freitas PF, Barbosa-Filho JM. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Brazilian Journal of Pharmacognosy. 2007;17(1):114–140. [Google Scholar]
  • 99.Balestrin L, Gaspari Dias JF, Miguel OG, Dall’Stella DSG, Miguel MD. Contribution to the phytochemical study of Dorstenia multiformis Miquel (Moraceae) with approach in antioxidant activity. Brazilian Journal of Pharmacognosy. 2008;18(2):230–235. [Google Scholar]
  • 100.Iwu MM, Jackson JE, Tally JD, Klayman DL. Evaluation of plant extracts for antileishmanial activity using a mechanism-based radiorespirometric microtechnique (RAM) Planta Medica. 1992;58(5):436–441. doi: 10.1055/s-2006-961508. [DOI] [PubMed] [Google Scholar]
  • 101.Kawasaki M, Hayashi T, Arisawa M, et al. Structure of scoparic acid A, a new labdane-type diterpenoid from A Paraguayan crude drug 'Typycha Kuratu' (Scoparia Dulcis L.) Chemical and Pharmaceutical Bulletin. 1987;35(9):3963–3966. doi: 10.1248/cpb.35.3963. [DOI] [PubMed] [Google Scholar]
  • 102.Ahsan M, Islam SKN, Gray AI, Stimson WH. Cytotoxic diterpenes from Scoparia dulcis. Journal of Natural Products. 2003;66(7):958–961. doi: 10.1021/np020356j. [DOI] [PubMed] [Google Scholar]
  • 103.Li Y, Chen X, Satake M, Oshima Y, Ohizumi Y. Acetylated flavonoid glycosides potentiating NGF action from Scoparia dulcis. Journal of Natural Products. 2004;67(4):725–727. doi: 10.1021/np0302908. [DOI] [PubMed] [Google Scholar]
  • 104.Nishino H, Hayashi T, Arisawa M, Satomi Y, Iwashima A. Antitumor-promoting activity of scopadulcic acid B, isolated from the medicinal plant Scoparia dulcis L. Oncology. 1993;50(2):100–103. doi: 10.1159/000227156. [DOI] [PubMed] [Google Scholar]
  • 105.Hayashi T, Okamura K, Kakemi M, et al. Scopadulcic acid B, a new tetracyclic diterpenoid from Scoparia dulcis L. Its structure, H+,K+-adenosine triphosphatase inhibitory activity and pharmacokinetic behaviour in rats. Chemical and Pharmaceutical Bulletin. 1990;38(10):2740–2745. doi: 10.1248/cpb.38.2740. [DOI] [PubMed] [Google Scholar]
  • 106.Hayashi K, Niwayama S, Hayashi T, Nago R, Ochiai H, Morita N. In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1. Antiviral Research. 1988;9(6):345–354. doi: 10.1016/0166-3542(88)90036-8. [DOI] [PubMed] [Google Scholar]
  • 107.Freire SM, Torres LM, Roque NF, Souccar C, Lapa AJ. Analgesic activity of a triterpene isolated from Scoparia dulcis L. (Vassourinha) Memorias do Instituto Oswaldo Cruz. 1991;86:149–151. doi: 10.1590/s0074-02761991000600034. [DOI] [PubMed] [Google Scholar]
  • 108.Li Y, Ohizumi Y. Search for constituents with neurotrophic factor-potentiating activity from the medicinal plants of Paraguay and Thailand. Yakugaku Zasshi. 2004;124(7):417–424. doi: 10.1248/yakushi.124.417. [DOI] [PubMed] [Google Scholar]
  • 109.Ahmed M, Shikha HA, Sadhu SK, Rahman MT, Datta BK. Analgesic, diuretic, and anti-inflammatory principle from Scoparia dulcis. Pharmazie. 2001;56(8):657–660. [PubMed] [Google Scholar]
  • 110.Babincová M, Sourivong P. Free radical scavenging activity of Scoparia dulcis extract. Journal of Medicinal Food. 2001;4(3):179–181. doi: 10.1089/109662001753165765. [DOI] [PubMed] [Google Scholar]
  • 111.Praveen TK, Dharmaraj S, Bajaj J, et al. Hepatoprotective activity of petroleum ether, diethyl ether, and methanol extract of Scoparia dulcis L. against CCl4-induced acute liver injury in mice. Indian Journal of Pharmacology. 2009;41(3):110–114. doi: 10.4103/0253-7613.55206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Ratnasooriya WD, Jayakody JRAC, Premakumara GAS, Ediriweera ERHSS. Antioxidant activity of water extract of Scoparia dulcis. Fitoterapia. 2005;76(2):220–222. doi: 10.1016/j.fitote.2004.06.012. [DOI] [PubMed] [Google Scholar]
  • 113.Tsai JC, Peng WH, Chiu TH, et al. Hepatoprotective effect of scoparia dulcis on carbon tetrachloride induced acute liver injury in mice. American Journal of Chinese Medicine. 2010;38(4):761–775. doi: 10.1142/S0192415X10008226. [DOI] [PubMed] [Google Scholar]
  • 114.Latha M, Ramkumar KM, Pari L, Damodaran PN, Rajeshkannan V, Suresh T. Phytochemical and antimicrobial study of an antidiabetic plant: Scoparia dulcis L. Journal of Medicinal Food. 2006;9(3):391–394. doi: 10.1089/jmf.2006.9.391. [DOI] [PubMed] [Google Scholar]
  • 115.Phan MG, Phan TS, Matsunami K, Otsuka H. Chemical and biological evaluation on scopadulane-type diterpenoids from Scoparia dulcis of Vietnamese origin. Chemical and Pharmaceutical Bulletin. 2006;54(4):546–549. doi: 10.1248/cpb.54.546. [DOI] [PubMed] [Google Scholar]
  • 116.Gachet MS, Lecaro JS, Kaiser M, et al. Assessment of anti-protozoal activity of plants traditionally used in Ecuador in the treatment of leishmaniasis. Journal of Ethnopharmacology. 2010;128(1):184–197. doi: 10.1016/j.jep.2010.01.007. [DOI] [PubMed] [Google Scholar]
  • 117.Babincová M, Schronerová K, Sourivong P. Antiulcer activity of water extract of Scoparia dulcis. Fitoterapia. 2008;79(7-8):587–588. doi: 10.1016/j.fitote.2008.05.001. [DOI] [PubMed] [Google Scholar]
  • 118.Mesía-Vela S, Bielavsky M, Torres LMB, et al. In vivo inhibition of gastric acid secretion by the aqueous extract of Scoparia dulcis L. in rodents. Journal of Ethnopharmacology. 2007;111(2):403–408. doi: 10.1016/j.jep.2006.12.009. [DOI] [PubMed] [Google Scholar]
  • 119.Pari L, Venkateswaran S. Hypoglycaemic activity of Scopariadulcis L. extract in alloxan induced hyperglycaemic rats. Phytotherapy Research. 2002;16:662–664. doi: 10.1002/ptr.1036. [DOI] [PubMed] [Google Scholar]
  • 120.Beh JE, Latip J, Abdullah MP, Ismail A, Hamid M. Scoparia dulcis (SDF7) endowed with glucose uptake properties on L6 myotubes compared insulin. Journal of Ethnopharmacology. 2010;129(1):23–33. doi: 10.1016/j.jep.2010.02.009. [DOI] [PubMed] [Google Scholar]
  • 121.Pari L, Latha M, Rao CA. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: Studies on insulin binding to erythrocytes. Journal of Basic and Clinical Physiology and Pharmacology. 2004;15(3-4):223–240. doi: 10.1515/jbcpp.2004.15.3-4.223. [DOI] [PubMed] [Google Scholar]
  • 122.Lorenzi H. Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 2nd edition. Vol. 1. Nova Odessa, Brazil: Plantarum; 1998. [Google Scholar]
  • 123.Tanaka JCA, Da Silva CC, Dias Filho BP, Nakamura CV, De Carvalho JE, Foglio MA. Chemical constituents of Luehea divaricata Mart. (Tiliaceae) Quimica Nova. 2005;28(5):834–837. [Google Scholar]
  • 124.Barroso GM. Sistemática de angiospermas do Brasil. Vol. 1. São Paulo, Brazil: EDUSP; 1978. [Google Scholar]
  • 125.Choi HJ, Eun JS, Kim BG, Kim SY, Jeon H, Soh Y. Vitexin, an HIF-1α inhibitor, has anti-metastatic potential in PC12 cells. Molecules and Cells. 2006;22(3):291–299. [PubMed] [Google Scholar]
  • 126.Kim JH, Lee BC, Kim JH, et al. The isolation and antioxidative effects of vitexin from Acer palmatum. Archives of Pharmacal Research. 2005;28(2):195–202. doi: 10.1007/BF02977715. [DOI] [PubMed] [Google Scholar]
  • 127.Hsum YW, Yew WT, Hong PLV, et al. Cancer chemopreventive activity of maslinic acid: suppression of COX-2 expression and inhibition of NF-KB and AP-1 activation in raji cells. Planta Medica. 2011;77(2):152–157. doi: 10.1055/s-0030-1250203. [DOI] [PubMed] [Google Scholar]
  • 128.Li C, Yang Z, Zhai C, et al. Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor α by inhibiting NF-κB signaling pathway. Molecular Cancer. 2010;9, article no. 73 doi: 10.1186/1476-4598-9-73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Müller JB, Ceron CS, Kuntz VT, Pozzatti P. Avaliação da Suscetibilidade Antifúngica e Antibacteriana do Extrato Bruto e Frações das Folhas de Luehea divaricata Martius. In: Anais da 58ª Reunião Anual da SBPC; 2006; Florianópolis, Brazil. [Google Scholar]
  • 130.Bighetti AE, Antônio MA, Possent A, Foglio MA, Siqueira MG, Carvalho JE. Efeitos da administração aguda e subcrônica da Luehea divaricata Martus et Zuccarini. Lecta. 2004;22(1/2):53–58. [Google Scholar]
  • 131.Felício LP, Silva EM, Ribeiro V, et al. Mutagenic potential and modulatory effects of the medicinal plant Luehea divaricata (Malvaceae) in somatic cells of Drosophila melanogaster: SMART/wing. Genetics and Molecular Research. 2011;10(1):16–24. doi: 10.4238/vol10-1gmr982. [DOI] [PubMed] [Google Scholar]
  • 132.Zacchino S, Santecchia C, Lopez S, et al. In vitro antifungal evaluation and studies on mode of action of eight selected species from the Argentina flora. Phytomedicine. 1998;5:389–395. doi: 10.1016/S0944-7113(98)80022-6. [DOI] [PubMed] [Google Scholar]
  • 133.Mendonça RC, Felfili JM, Walter BMT, et al. Flora vascular do cerrado. In: Sano SM, Almeida SP, editors. Cerrado: ambiente e flora. Planaltina; 1998. pp. 289–556. [Google Scholar]
  • 134.Solon S, Lopes L, Sousa-Júnior PT, Schmeda-Hirschmann G. Free radical scavening activity of Lafoensia pacari. Journal of Ethnopharmacology. 2000;72:173–178. doi: 10.1016/s0378-8741(00)00233-6. [DOI] [PubMed] [Google Scholar]
  • 135.Rogerio AP, Fontanari C, Melo MCC, et al. Anti-inflammatory, analgesic and anti-oedematous effects of Lafoensia pacari extract and ellagic acid. Journal of Pharmacy and Pharmacology. 2006;58(9):1265–1273. doi: 10.1211/jpp.58.9.0014. [DOI] [PubMed] [Google Scholar]
  • 136.Rogerio AP, Fontanari C, Borducchi É, et al. Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. European Journal of Pharmacology. 2008;580(1-2):262–270. doi: 10.1016/j.ejphar.2007.10.034. [DOI] [PubMed] [Google Scholar]
  • 137.Porto MP, et al. Avaliação tóxico-genética do extrato de Lafoensia pacari em células somáticas de Drosophila melanogaste. In: Resumos do 54 Congresso Brasileiro de Genética,; 2008. [Google Scholar]
  • 138.Murakami S, Isobe Y, Higima H, Nagai H, Muramatu M, Otomo S. Inibition of gastric H+K+ ATPase and acid secretion by ellagic acid. Planta Medica. 1991;57(4):305–308. doi: 10.1055/s-2006-960103. [DOI] [PubMed] [Google Scholar]
  • 139.Akubue PI, Stohs SJ. Endrin-induced production of nitric oxide by rat peritoneal macrophages. Toxicology Letters. 1992;62(2-3):311–316. doi: 10.1016/0378-4274(92)90035-i. [DOI] [PubMed] [Google Scholar]
  • 140.Ramanathan L, Das NP. Inhibitory effects of some natural products on metal-induced lipid oxidation in cooked fish. Biological Trace Element Research. 1992;34(1):35–44. doi: 10.1007/BF02783896. [DOI] [PubMed] [Google Scholar]
  • 141.Sartori NT, Martins DTO. Screening’ farmacológico de plantas popularmente utilizadas como antiúlceras em Mato Gross. In: Simpósio de plantas medicinais do Brasil; 1996; Florianópolis, bRAZIL. p. 105. [Google Scholar]
  • 142.Tamashiro Filho P. Avaliação da atividade antiúlcera do extrato bruto metanólico de Lafoensia pacari St. Hil. (mangava brava) Cuiabá, Brazil: Universidade Federal de Mato Grosso; 1999. M.S. thesis. [Google Scholar]
  • 143.Beserra AMSS. Avaliação da atividade gastroprotetora do ácido elágico em modelos animais. Cuiabá, Brazil: Universidade Federal de Mato Grosso; 2008. M.S. thesis. [Google Scholar]
  • 144.Da Mota Menezes V, Atallah AN, Lapa AJ, Catapani WR. Assessing the therapeutic use of Lafoensia pacari St. Hil. extract (Mangava-Brava) in the eradication of Helicobacter pylori: double-blind randomized clinical trial. Helicobacter. 2006;11(3):188–195. doi: 10.1111/j.1523-5378.2006.00399.x. [DOI] [PubMed] [Google Scholar]
  • 145.Tonello VM. Estrutura de populações de Lafoensia pacari St. Hil. e dados etnobotânicos e fenológicos em Nossa Senhora do Livramento, Mato Grosso. Cuiabá, Brazil: Universidade Federal de Mato Grosso; 1997. M.S. thesis. [Google Scholar]
  • 146.Albuquerque DA, Lopes L. Modulation of Delayed-Type Hypersensitivity by Lafoensia pacari St. Hil. Bollettino Chimico Farmaceutico. 1999;2(138):p. 120. [Google Scholar]
  • 147.Rogério AP. Estudo da atividade antiinflamatória do extrato etanólico de Lafoensia pacari Jaume St. Hilaire (Lythraceae) Ribeirão Preto, Brazil: Universidade de São Paulo; 2002. M.S. thesis. [Google Scholar]
  • 148.Rogerio AP, Sá-Nunes A, Faccioli LH. The activity of medicinal plants and secondary metabolites on eosinophilic inflammation. Pharmacological Research. 2010;62(4):298–307. doi: 10.1016/j.phrs.2010.04.005. [DOI] [PubMed] [Google Scholar]
  • 149.Nascimento MVM, Galdino PM, Florentino IF, et al. Antinociceptive effect of Lafoensia pacari A. St.-Hil. independent of anti-inflammatory activity of ellagic acid. Journal of Natural Medicines. 2011;65(3-4):448–454. doi: 10.1007/s11418-011-0517-y. [DOI] [PubMed] [Google Scholar]
  • 150.Silva Junior IF, et al. Avaliação da atividade antifúngica e modo de ação dos extratos da entrecasca, frações e ácido elágico de Lafoensia pacari A. St.-Hil., Lythraceae. Revista Brasileira de Farmacognosia. 2010;20(3):422–428. [Google Scholar]
  • 151.Silva S-CFA. Loção para tratamento capilar e respectivo processo de preparação. Nº do Pedido: PI9903518-9 A2. Classiicação A61K 7/06. Instituto Nacional de Propriedade Industrial, 1996.

Articles from Evidence-based Complementary and Alternative Medicine : eCAM are provided here courtesy of Wiley

RESOURCES