Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Mar 11;18(5):1243–1248. doi: 10.1093/nar/18.5.1243

Insertional gene synthesis, a novel method of assembling consecutive DNA sequences within specific sites in plasmids. Construction of the HIV-1 tat gene.

R B Ciccarelli 1, L A Loomis 1, P E McCoon 1, D L Holzschu 1
PMCID: PMC330440  PMID: 2157195

Abstract

The construction of the HIV-1 tat gene using a novel method termed insertional gene synthesis (IGS) is described. IGS is used to assemble a gene or any DNA sequence in a stepwise manner within a plasmid containing a single stranded DNA phage origin of replication. The IGS method is based upon consecutive targeted insertions of long DNA oligonucleotides (greater than 100 bases) within the plasmid by oligonucleotide-directed mutagenesis. IGS therefore involves synthesis of only a few oligonucleotides corresponding to one strand of a gene. Furthermore, the gene is synthesized directly adjacent to bacterial gene regulatory sequences for direct expression. Using this approach, the 261 bp tat gene was assembled in three successive cycles adjacent to the lac promoter in the pEMBL-derivative, pKH125. The 15 kD tat protein was produced from this synthetic gene in E. coli upon IPTG induction. However, it was necessary to tightly control the expression of tat by including the lac I gene directly within the tat expression vector.

Full text

PDF
1243

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. E., Johnson I. D., Braddock M., Kingsman A. J., Kingsman S. M., Edwards R. M. Synthesis of a gene for the HIV transactivator protein TAT by a novel single stranded approach involving in vivo gap repair. Nucleic Acids Res. 1988 May 25;16(10):4287–4298. doi: 10.1093/nar/16.10.4287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann E., Ochs B., Abel K. J. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. 1988 Sep 30;69(2):301–315. doi: 10.1016/0378-1119(88)90440-4. [DOI] [PubMed] [Google Scholar]
  3. Bellini A. V., de Ferra F., Grandi G. A rapid and versatile site-directed method of mutagenesis for double-stranded plasmid DNA. Gene. 1988 Sep 30;69(2):325–330. doi: 10.1016/0378-1119(88)90442-8. [DOI] [PubMed] [Google Scholar]
  4. Carter P., Bedouelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985 Jun 25;13(12):4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dente L., Cesareni G., Cortese R. pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 1983 Mar 25;11(6):1645–1655. doi: 10.1093/nar/11.6.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eghtedarzadeh M. K., Henikoff S. Use of oligonucleotides to generate large deletions. Nucleic Acids Res. 1986 Jun 25;14(12):5115–5115. doi: 10.1093/nar/14.12.5115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gröger G., Ramalho-Ortigao F., Steil H., Seliger H. A comprehensive list of chemically synthesized genes. Nucleic Acids Res. 1988 Aug 25;16(16):7763–7771. doi: 10.1093/nar/16.16.7763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Khorana H. G. Total synthesis of a gene. Science. 1979 Feb 16;203(4381):614–625. doi: 10.1126/science.366749. [DOI] [PubMed] [Google Scholar]
  9. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  10. Larson G. P., Itakura K., Ito H., Rossi J. J. Saccharomyces cerevisiae actin--Escherichia coli lacZ gene fusions: synthetic-oligonucleotide-mediated deletion of the 309 base pair intervening sequence in the actin gene. Gene. 1983 Apr;22(1):31–39. doi: 10.1016/0378-1119(83)90061-6. [DOI] [PubMed] [Google Scholar]
  11. Mandecki W., Bolling T. J. FokI method of gene synthesis. Gene. 1988 Aug 15;68(1):101–107. doi: 10.1016/0378-1119(88)90603-8. [DOI] [PubMed] [Google Scholar]
  12. Mark D. F., Wang A., Levenson C. Site-specific mutagenesis to modify the human tumor necrosis factor gene. Methods Enzymol. 1987;154:403–414. doi: 10.1016/0076-6879(87)54087-3. [DOI] [PubMed] [Google Scholar]
  13. McClain W. H., Foss K., Mittelstadt K. L., Schneider J. Variants in clones of gene-machine-synthesized oligodeoxynucleotides. Nucleic Acids Res. 1986 Aug 26;14(16):6770–6770. doi: 10.1093/nar/14.16.6770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  15. Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
  16. Rink H., Liersch M., Sieber P., Meyer F. A large fragment approach to DNA synthesis: total synthesis of a gene for the protease inhibitor eglin c from the leech Hirudo medicinalis and its expression in E. coli. Nucleic Acids Res. 1984 Aug 24;12(16):6369–6387. doi: 10.1093/nar/12.16.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sharp P. M., Cowe E., Higgins D. G., Shields D. C., Wolfe K. H., Wright F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 1988 Sep 12;16(17):8207–8211. doi: 10.1093/nar/16.17.8207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Terwilliger T. C. Construction of a synthetic variant of the bacteriophage f1 gene V by assembling oligodeoxynucleotides corresponding to only one strand of DNA. Gene. 1988 Nov 15;71(1):41–47. doi: 10.1016/0378-1119(88)90075-3. [DOI] [PubMed] [Google Scholar]
  19. Terwilliger T. C. Simple and highly efficient site-specific mutagenesis, by ligation of an oligodeoxyribonucleotide into gapped heteroduplex DNA in which the template strand contains deoxyuridine. Gene. 1988 Sep 30;69(2):317–324. doi: 10.1016/0378-1119(88)90441-6. [DOI] [PubMed] [Google Scholar]
  20. Uhlmann E. An alternative approach in gene synthesis: use of long selfpriming oligodeoxynucleotides for the construction of double-stranded DNA. Gene. 1988 Nov 15;71(1):29–40. doi: 10.1016/0378-1119(88)90074-1. [DOI] [PubMed] [Google Scholar]
  21. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  22. Wosnick M. A., Barnett R. W., Vicentini A. M., Erfle H., Elliott R., Sumner-Smith M., Mantei N., Davies R. W. Rapid construction of large synthetic genes: total chemical synthesis of two different versions of the bovine prochymosin gene. Gene. 1987;60(1):115–127. doi: 10.1016/0378-1119(87)90219-8. [DOI] [PubMed] [Google Scholar]
  23. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. Methods Enzymol. 1987;154:329–350. doi: 10.1016/0076-6879(87)54083-6. [DOI] [PubMed] [Google Scholar]
  24. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA. 1984 Dec;3(6):479–488. doi: 10.1089/dna.1.1984.3.479. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES