Abstract
DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhattacharyya D., Tano K., Bunick G. J., Uberbacher E. C., Behnke W. D., Mitra S. Rapid, large-scale purification and characterization of 'Ada protein' (O6 methylguanine-DNA methyltransferase) of E. coli. Nucleic Acids Res. 1988 Jul 25;16(14A):6397–6410. doi: 10.1093/nar/16.14.6397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brent T. P., Dolan M. E., Fraenkel-Conrat H., Hall J., Karran P., Laval L., Margison G. P., Montesano R., Pegg A. E., Potter P. M. Repair of O-alkylpyrimidines in mammalian cells: a present consensus. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1759–1762. doi: 10.1073/pnas.85.6.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brent T. P. Inactivation of purified human O6-alkylguanine-DNA alkyltransferase by alkylating agents or alkylated DNA. Cancer Res. 1986 May;46(5):2320–2323. [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
- D'Incalci M., Citti L., Taverna P., Catapano C. V. Importance of the DNA repair enzyme O6-alkyl guanine alkyltransferase (AT) in cancer chemotherapy. Cancer Treat Rev. 1988 Dec;15(4):279–292. doi: 10.1016/0305-7372(88)90026-6. [DOI] [PubMed] [Google Scholar]
- Demple B., Sedgwick B., Robins P., Totty N., Waterfield M. D., Lindahl T. Active site and complete sequence of the suicidal methyltransferase that counters alkylation mutagenesis. Proc Natl Acad Sci U S A. 1985 May;82(9):2688–2692. doi: 10.1073/pnas.82.9.2688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolan M. E., Oplinger M., Pegg A. E. Use of a dodecadeoxynucleotide to study repair of the O4-methylthymine lesion. Mutat Res. 1988 Mar;193(2):131–137. doi: 10.1016/0167-8817(88)90043-0. [DOI] [PubMed] [Google Scholar]
- Downes C. S. DNA repair. Views of unity and diversity. Nature. 1988 Mar 17;332(6161):208–209. doi: 10.1038/332208a0. [DOI] [PubMed] [Google Scholar]
- Foote R. S., Mitra S., Pal B. C. Demethylation of O6-methylguanine in a synthetic DNA polymer by an inducible activity in Escherichia coli. Biochem Biophys Res Commun. 1980 Nov 28;97(2):654–659. doi: 10.1016/0006-291x(80)90314-9. [DOI] [PubMed] [Google Scholar]
- Fried V. A., Smith H. T., Hildebrandt E., Weiner K. Ubiquitin has intrinsic proteolytic activity: implications for cellular regulation. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3685–3689. doi: 10.1073/pnas.84.11.3685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris A. L., Karran P., Lindahl T. O6-Methylguanine-DNA methyltransferase of human lymphoid cells: structural and kinetic properties and absence in repair-deficient cells. Cancer Res. 1983 Jul;43(7):3247–3252. [PubMed] [Google Scholar]
- Harris G., Lawley P. D., Asbery L. J., Chandler P. M., Jones M. G. Autoimmune haemolytic disease in mice after exposure to a methylating carcinogen. Immunology. 1983 Jul;49(3):439–449. [PMC free article] [PubMed] [Google Scholar]
- Hora J. F., Eastman A., Bresnick E. O6-methylguanine methyltransferase in rat liver. Biochemistry. 1983 Aug 2;22(16):3759–3763. doi: 10.1021/bi00285a007. [DOI] [PubMed] [Google Scholar]
- Jun G. J., Ro J. Y., Kim M. H., Park G. H., Paik W. K., Magee P. N., Kim S. Studies on the distribution of O6-methylguanine-DNA methyltransferase in rat. Biochem Pharmacol. 1986 Feb 1;35(3):377–384. doi: 10.1016/0006-2952(86)90208-x. [DOI] [PubMed] [Google Scholar]
- Kodama K. I., Nakabeppu Y., Sekiguchi M. Cloning and expression of the Bacillus subtilis methyltransferase gene in Escherichia coli ada- cells. Mutat Res. 1989 Sep;218(2):153–163. doi: 10.1016/0921-8777(89)90022-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lawley P. D., Harris G., Phillips E., Irving W., Colaço C. B., Lydyard P. M., Roitt I. M. Repair of chemical carcinogen-induced damage in DNA of human lymphocytes and lymphoid cell lines--studies of the kinetics of removal of O6-methylguanine and 3-methyladenine. Chem Biol Interact. 1986 Jan;57(1):107–121. doi: 10.1016/0009-2797(86)90053-0. [DOI] [PubMed] [Google Scholar]
- Lawley P. D., Orr D. J. Specific excision of methylation products from DNA of Escherichia coli treated with N-methyl-N'-nitro-N-nitrosoguanidine. Chem Biol Interact. 1970 Aug;2(2):154–157. doi: 10.1016/0009-2797(70)90047-5. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem. 1988;57:133–157. doi: 10.1146/annurev.bi.57.070188.001025. [DOI] [PubMed] [Google Scholar]
- McCarthy T. V., Lindahl T. Methyl phosphotriesters in alkylated DNA are repaired by the Ada regulatory protein of E. coli. Nucleic Acids Res. 1985 Apr 25;13(8):2683–2698. doi: 10.1093/nar/13.8.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morohoshi F., Munakata N. Multiple species of Bacillus subtilis DNA alkyltransferase involved in the adaptive response to simple alkylating agents. J Bacteriol. 1987 Feb;169(2):587–592. doi: 10.1128/jb.169.2.587-592.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers K. A., Saffhill R., O'Connor P. J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis. 1988 Feb;9(2):285–292. doi: 10.1093/carcin/9.2.285. [DOI] [PubMed] [Google Scholar]
- Myrnes B., Giercksky K. E., Krokan H. Repair of O6-methyl-guanine residues in DNA takes place by a similar mechanism in extracts from HeLa cells, human liver, and rat liver. J Cell Biochem. 1982;20(4):381–392. doi: 10.1002/jcb.240200408. [DOI] [PubMed] [Google Scholar]
- Myrnes B., Wittwer C. U. Purification of the human O6-methylguanine-DNA methyltransferase and uracil-DNA glycosylase, the latter to apparent homogeneity. Eur J Biochem. 1988 Apr 15;173(2):383–387. doi: 10.1111/j.1432-1033.1988.tb14010.x. [DOI] [PubMed] [Google Scholar]
- Nakabeppu Y., Kondo H., Kawabata S., Iwanaga S., Sekiguchi M. Purification and structure of the intact Ada regulatory protein of Escherichia coli K12, O6-methylguanine-DNA methyltransferase. J Biol Chem. 1985 Jun 25;260(12):7281–7288. [PubMed] [Google Scholar]
- Newbold R. F., Warren W., Medcalf A. S., Amos J. Mutagenicity of carcinogenic methylating agents is associated with a specific DNA modification. Nature. 1980 Feb 7;283(5747):596–599. doi: 10.1038/283596a0. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Wiest L., Foote R. S., Mitra S., Perry W. Purification and properties of O6-methylguanine-DNA transmethylase from rat liver. J Biol Chem. 1983 Feb 25;258(4):2327–2333. [PubMed] [Google Scholar]
- Potter P. M., Wilkinson M. C., Fitton J., Carr F. J., Brennand J., Cooper D. P., Margison G. P. Characterisation and nucleotide sequence of ogt, the O6-alkylguanine-DNA-alkyltransferase gene of E. coli. Nucleic Acids Res. 1987 Nov 25;15(22):9177–9193. doi: 10.1093/nar/15.22.9177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rebeck G. W., Coons S., Carroll P., Samson L. A second DNA methyltransferase repair enzyme in Escherichia coli. Proc Natl Acad Sci U S A. 1988 May;85(9):3039–3043. doi: 10.1073/pnas.85.9.3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renard A., Verly W. G., Mehta J. R., Ludlum D. B. Properties of the chromatin repair activity against O6-ethylguanine lesions in DNA. Mechanism of the reaction. Eur J Biochem. 1983 Nov 15;136(3):461–467. doi: 10.1111/j.1432-1033.1983.tb07764.x. [DOI] [PubMed] [Google Scholar]
- Roberts P. L. Comparison of fluorographic methods for detecting radioactivity in polyacrylamide gels or on nitrocellulose filters. Anal Biochem. 1985 Jun;147(2):521–524. doi: 10.1016/0003-2697(85)90308-2. [DOI] [PubMed] [Google Scholar]
- Schneider W. C. Simplified isolation and quantitation of cytoplasmic DNA from rat liver. Anal Biochem. 1980 Apr;103(2):413–418. doi: 10.1016/0003-2697(80)90632-6. [DOI] [PubMed] [Google Scholar]
- Teo I. A. Proteolytic processing of the Ada protein that repairs DNA O6-methylguanine residues in E. coli. Mutat Res. 1987 Mar;183(2):123–127. doi: 10.1016/0167-8817(87)90054-x. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiestler O., Kleihues P., Pegg A. E. O6-alkylguanine-DNA alkyltransferase activity in human brain and brain tumors. Carcinogenesis. 1984 Jan;5(1):121–124. doi: 10.1093/carcin/5.1.121. [DOI] [PubMed] [Google Scholar]
- Wilkinson M. C., Potter P. M., Cawkwell L., Georgiadis P., Patel D., Swann P. F., Margison G. P. Purification of the E. coli ogt gene product to homogeneity and its rate of action on O6-methylguanine, O6-ethylguanine and O4-methylthymine in dodecadeoxyribonucleotides. Nucleic Acids Res. 1989 Nov 11;17(21):8475–8484. doi: 10.1093/nar/17.21.8475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagi T., Yarosh D. B., Day R. S., 3rd Comparison of repair of O6-methylguanine produced by N-methyl-N'-nitro-N-nitrosoguanidine in mouse and human cells. Carcinogenesis. 1984 May;5(5):593–600. doi: 10.1093/carcin/5.5.593. [DOI] [PubMed] [Google Scholar]
- Yarosh D. B., Foote R. S., Mitra S., Day R. S., 3rd Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains. Carcinogenesis. 1983;4(2):199–205. doi: 10.1093/carcin/4.2.199. [DOI] [PubMed] [Google Scholar]
- Yarosh D. B., Rice M., Day R. S., 3rd, Foote R. S., Mitra S. O6-Methylguanine-DNA methyltransferase in human cells. Mutat Res. 1984 Jan;131(1):27–36. doi: 10.1016/0167-8817(84)90044-0. [DOI] [PubMed] [Google Scholar]
- Yarosh D. B. The role of O6-methylguanine-DNA methyltransferase in cell survival, mutagenesis and carcinogenesis. Mutat Res. 1985 Jan-Mar;145(1-2):1–16. doi: 10.1016/0167-8817(85)90034-3. [DOI] [PubMed] [Google Scholar]
- Yoshikai T., Nakabeppu Y., Sekiguchi M. Proteolytic cleavage of Ada protein that carries methyltransferase and transcriptional regulator activities. J Biol Chem. 1988 Dec 15;263(35):19174–19180. [PubMed] [Google Scholar]
- Zarbl H., Sukumar S., Arthur A. V., Martin-Zanca D., Barbacid M. Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. 1985 May 30-Jun 5Nature. 315(6018):382–385. doi: 10.1038/315382a0. [DOI] [PubMed] [Google Scholar]
- van Duin M., de Wit J., Odijk H., Westerveld A., Yasui A., Koken M. H., Hoeijmakers J. H., Bootsma D. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell. 1986 Mar 28;44(6):913–923. doi: 10.1016/0092-8674(86)90014-0. [DOI] [PubMed] [Google Scholar]
- van Duin M., van den Tol J., Warmerdam P., Odijk H., Meijer D., Westerveld A., Bootsma D., Hoeijmakers J. H. Evolution and mutagenesis of the mammalian excision repair gene ERCC-1. Nucleic Acids Res. 1988 Jun 24;16(12):5305–5322. doi: 10.1093/nar/16.12.5305. [DOI] [PMC free article] [PubMed] [Google Scholar]