Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Apr 11;18(7):1719–1723. doi: 10.1093/nar/18.7.1719

The initiation of translation in E. coli: apparent base pairing between the 16srRNA and downstream sequences of the mRNA.

M L Sprengart 1, H P Fatscher 1, E Fuchs 1
PMCID: PMC330588  PMID: 2186363

Abstract

Bacteriophage T7's gene 0.3, coding for an antirestriction protein, possesses one of the strongest translation initiation regions (TIR) in E. coli. It was isolated on DNA fragments of differing length and cloned upstream of the mouse dihydrofolate reductase gene in an expression vector to control the translation of this gene's sequence. The TIR's efficiency was highly dependent on nucleotides +15 to +26 downstream of the gene's AUG. This sequence is complementary to nucleotides 1471-1482 of the 16srRNA. Similar sequences complementary to this rRNA region are present in other efficient TIRs of the E. coli genome and those of its bacteriophages. There seems to be a correlation between this sequence homology and the efficiency of the initiation signals. We propose that this region specifies a stimulatory interaction between the mRNA and 16srRNA besides the Shine-Dalgarno interaction during the translation initiation step.

Full text

PDF
1719

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altuvia S., Oppenheim A. B. Translational regulatory signals within the coding region of the bacteriophage lambda cIII gene. J Bacteriol. 1986 Jul;167(1):415–419. doi: 10.1128/jb.167.1.415-419.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brimacombe R., Atmadja J., Stiege W., Schüler D. A detailed model of the three-dimensional structure of Escherichia coli 16 S ribosomal RNA in situ in the 30 S subunit. J Mol Biol. 1988 Jan 5;199(1):115–136. doi: 10.1016/0022-2836(88)90383-x. [DOI] [PubMed] [Google Scholar]
  3. Canonaco M. A., Gualerzi C. O., Pon C. L. Alternative occupancy of a dual ribosomal binding site by mRNA affected by translation initiation factors. Eur J Biochem. 1989 Jul 1;182(3):501–506. doi: 10.1111/j.1432-1033.1989.tb14856.x. [DOI] [PubMed] [Google Scholar]
  4. Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  5. Chu Y. G., Cantor C. R. Segmental flexibility in Escherichia coli ribosomal protein S1 as studied by fluorescence polarization. Nucleic Acids Res. 1979;6(6):2363–2379. doi: 10.1093/nar/6.6.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dahlberg A. E., Dahlberg J. E. Binding of ribosomal protein S1 of Escherichia coli to the 3' end of 16S rRNA. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2940–2944. doi: 10.1073/pnas.72.8.2940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dahlberg A. E. The functional role of ribosomal RNA in protein synthesis. Cell. 1989 May 19;57(4):525–529. doi: 10.1016/0092-8674(89)90122-0. [DOI] [PubMed] [Google Scholar]
  8. Draper D. E., Pratt C. W., von Hippel P. H. Escherichia coli ribosomal protein S1 has two polynucleotide binding sites. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4786–4790. doi: 10.1073/pnas.74.11.4786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dreyfus M., Kotlarz D., Busby S. Point mutations that affect translation initiation in the Escherichia coli gal E gene. J Mol Biol. 1985 Apr 5;182(3):411–417. doi: 10.1016/0022-2836(85)90200-1. [DOI] [PubMed] [Google Scholar]
  10. Dreyfus M. What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? J Mol Biol. 1988 Nov 5;204(1):79–94. doi: 10.1016/0022-2836(88)90601-8. [DOI] [PubMed] [Google Scholar]
  11. Dunn J. J., Studier F. W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol. 1983 Jun 5;166(4):477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
  12. Fatscher H. P., Geisen R. M., Fuchs E. Only one out of the three strong ribosomal binding sites of the early region of bacteriophage T7 exhibits high translational efficiency in fragments of about 30 base pairs. Eur J Biochem. 1988 Aug 15;175(3):461–465. doi: 10.1111/j.1432-1033.1988.tb14217.x. [DOI] [PubMed] [Google Scholar]
  13. Ferretti L., Karnik S. S., Khorana H. G., Nassal M., Oprian D. D. Total synthesis of a gene for bovine rhodopsin. Proc Natl Acad Sci U S A. 1986 Feb;83(3):599–603. doi: 10.1073/pnas.83.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Geisen R. M., Fatscher H. P., Fuchs E. More than 150 nucleotides flanking the initiation codon contribute to the efficiency of the ribosomal binding site from bacteriophage T7 gene 1. Nucleic Acids Res. 1987 Jun 25;15(12):4931–4943. doi: 10.1093/nar/15.12.4931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. doi: 10.1093/nar/10.22.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kang C. W., Cantor C. R. Structure of ribosome-bound messenger RNA as revealed by enzymatic accessibility studies. J Mol Biol. 1985 Jan 20;181(2):241–251. doi: 10.1016/0022-2836(85)90088-9. [DOI] [PubMed] [Google Scholar]
  18. Kolb A., Hermoso J. M., Thomas J. O., Szer W. Nucleic acid helix-unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2379–2383. doi: 10.1073/pnas.74.6.2379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lanzer M., Bujard H. Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8973–8977. doi: 10.1073/pnas.85.23.8973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mark K. K., Studier F. W. Purification of the gene 0.3 protein of bacteriophage T7, an inhibitor of the DNA restriction system of Escherichia coli. J Biol Chem. 1981 Mar 10;256(5):2573–2578. [PubMed] [Google Scholar]
  21. Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Noller H. F., Woese C. R. Secondary structure of 16S ribosomal RNA. Science. 1981 Apr 24;212(4493):403–411. doi: 10.1126/science.6163215. [DOI] [PubMed] [Google Scholar]
  23. Petersen G. B., Stockwell P. A., Hill D. F. Messenger RNA recognition in Escherichia coli: a possible second site of interaction with 16S ribosomal RNA. EMBO J. 1988 Dec 1;7(12):3957–3962. doi: 10.1002/j.1460-2075.1988.tb03282.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Place N., Fien K., Mahoney M. E., Wulff D. L., Ho Y. S., Debouck C., Rosenberg M., Shih M. C., Gussin G. N. Mutations that alter the DNA binding site for the bacteriophage lambda cII protein and affect the translation efficiency of the cII gene. J Mol Biol. 1984 Dec 25;180(4):865–880. doi: 10.1016/0022-2836(84)90261-4. [DOI] [PubMed] [Google Scholar]
  25. Plumbridge J., Söll D. Characterization of cis-acting mutations which increase expression of a glnS-lacZ fusion in Escherichia coli. Mol Gen Genet. 1989 Mar;216(1):113–119. doi: 10.1007/BF00332238. [DOI] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schneider T. D., Stormo G. D., Gold L., Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J Mol Biol. 1986 Apr 5;188(3):415–431. doi: 10.1016/0022-2836(86)90165-8. [DOI] [PubMed] [Google Scholar]
  28. Schnier J., Stöffler G., Nishi K. Deletion and insertion mutants in the structural gene for ribosomal protein S1 from Escherichia coli. J Biol Chem. 1986 Sep 5;261(25):11866–11871. [PubMed] [Google Scholar]
  29. Schoner B. E., Hsiung H. M., Belagaje R. M., Mayne N. G., Schoner R. G. Role of mRNA translational efficiency in bovine growth hormone expression in Escherichia coli. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5403–5407. doi: 10.1073/pnas.81.17.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  31. Stern S., Weiser B., Noller H. F. Model for the three-dimensional folding of 16 S ribosomal RNA. J Mol Biol. 1988 Nov 20;204(2):447–481. doi: 10.1016/0022-2836(88)90588-8. [DOI] [PubMed] [Google Scholar]
  32. Stormo G. D., Schneider T. D., Gold L. M. Characterization of translational initiation sites in E. coli. Nucleic Acids Res. 1982 May 11;10(9):2971–2996. doi: 10.1093/nar/10.9.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Subramanian A. R. Structure and functions of ribosomal protein S1. Prog Nucleic Acid Res Mol Biol. 1983;28:101–142. doi: 10.1016/s0079-6603(08)60085-9. [DOI] [PubMed] [Google Scholar]
  34. Tessier L. H., Jallat S., Sauvageot M., Crystal R. G., Courtney M. RNA structural elements for expression in Escherichia coli. Alpha 1-antitrypsin synthesis using translation control elements based on the cII ribosome-binding site of phage lambda. FEBS Lett. 1986 Nov 24;208(2):183–188. doi: 10.1016/0014-5793(86)81014-6. [DOI] [PubMed] [Google Scholar]
  35. Thanaraj T. A., Pandit M. W. An additional ribosome-binding site on mRNA of highly expressed genes and a bifunctional site on the colicin fragment of 16S rRNA from Escherichia coli: important determinants of the efficiency of translation-initiation. Nucleic Acids Res. 1989 Apr 25;17(8):2973–2985. doi: 10.1093/nar/17.8.2973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Walz A., Pirrotta V., Ineichen K. Lambda repressor regulates the switch between PR and Prm promoters. Nature. 1976 Aug 19;262(5570):665–669. doi: 10.1038/262665a0. [DOI] [PubMed] [Google Scholar]
  37. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zwieb C., Jemiolo D. K., Jacob W. F., Wagner R., Dahlberg A. E. Characterization of a collection of deletion mutants at the 3'-end of 16S ribosomal RNA of Escherichia coli. Mol Gen Genet. 1986 May;203(2):256–264. doi: 10.1007/BF00333963. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES