Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Apr 25;18(8):2007–2010. doi: 10.1093/nar/18.8.2007

Excision of cytosine hydrates from Z-DNA.

N J Duker 1, K M Weems 1
PMCID: PMC330675  PMID: 2336388

Abstract

Ultraviolet irradiation of DNA produces cytosine hydrate, released as a free base by E. coli endonuclease III. Cytosine hydrate excision was investigated by assaying photoproduct release from cytosine-radiolabeled, irradiated poly(dG-dC):poly(dG-dC). Conformational shifts between B-DNA and Z-DNA were affected by heating the polymer in either nickel chloride or cobaltous chloride, and were determined by circular dichroism. Rates of enzymic cytosine hydrate release did not differ between the different substrate conformations. Irradiation of left-handed poly(dG-dC):poly(dG-dC) resulted in cytosine hydrate formation. Therefore, neither formation nor enzymic excision of ultraviolet-induced cytosine hydrates are substantially affected by these DNA conformational states.

Full text

PDF
2007

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boiteux S., Costa de Oliveira R., Laval J. The Escherichia coli O6-methylguanine-DNA methyltransferase does not repair promutagenic O6-methylguanine residues when present in Z-DNA. J Biol Chem. 1985 Jul 25;260(15):8711–8715. [PubMed] [Google Scholar]
  2. Boiteux S., Laval F. Repair of O6-methylguanine, by mammalian cell extracts, in alkylated DNA and poly(dG-m5dC).(poly dG-m5dC) in B and Z forms. Carcinogenesis. 1985 May;6(5):805–807. doi: 10.1093/carcin/6.5.805. [DOI] [PubMed] [Google Scholar]
  3. Boorstein R. J., Hilbert T. P., Cadet J., Cunningham R. P., Teebor G. W. UV-induced pyrimidine hydrates in DNA are repaired by bacterial and mammalian DNA glycosylase activities. Biochemistry. 1989 Jul 25;28(15):6164–6170. doi: 10.1021/bi00441a007. [DOI] [PubMed] [Google Scholar]
  4. Brent T. P. Properties of a human lymphoblast AP-endonuclease associated with activity for DNA damaged by ultraviolet light, gamma-rays, or osmium tetroxide. Biochemistry. 1983 Sep 13;22(19):4507–4512. doi: 10.1021/bi00288a024. [DOI] [PubMed] [Google Scholar]
  5. Doetsch P. W., Helland D. E., Haseltine W. A. Mechanism of action of a mammalian DNA repair endonuclease. Biochemistry. 1986 Apr 22;25(8):2212–2220. doi: 10.1021/bi00356a054. [DOI] [PubMed] [Google Scholar]
  6. Doetsch P. W., Henner W. D., Cunningham R. P., Toney J. H., Helland D. E. A highly conserved endonuclease activity present in Escherichia coli, bovine, and human cells recognizes oxidative DNA damage at sites of pyrimidines. Mol Cell Biol. 1987 Jan;7(1):26–32. doi: 10.1128/mcb.7.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duker N. J., Chao T. L., Resnick E. M. Rates of heat-induced DNA purine alterations in synthetic polydeoxyribonucleotides. Chem Biol Interact. 1986 Jun;58(3):241–251. doi: 10.1016/s0009-2797(86)80101-6. [DOI] [PubMed] [Google Scholar]
  8. Duker N. J., Grant C. L. Alterations in the levels of deoxyuridine triphosphatase, uracil-DNA glycosylase and AP endonuclease during the cell cycle. Exp Cell Res. 1980 Feb;125(2):493–497. doi: 10.1016/0014-4827(80)90145-7. [DOI] [PubMed] [Google Scholar]
  9. Duker N. J. Rates of heat-induced pyrimidine alterations in synthetic polydeoxyribonucleotides. Chem Biol Interact. 1986 Dec;60(3):265–273. doi: 10.1016/0009-2797(86)90057-8. [DOI] [PubMed] [Google Scholar]
  10. Duker N. J., Teebor G. W. Different ultraviolet DNA endonuclease activity in human cells. Nature. 1975 May 1;255(5503):82–84. doi: 10.1038/255082a0. [DOI] [PubMed] [Google Scholar]
  11. Gallagher P. E., Duker N. J. Detection of UV purine photoproducts in a defined sequence of human DNA. Mol Cell Biol. 1986 Feb;6(2):707–709. doi: 10.1128/mcb.6.2.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lagravère C., Malfoy B., Leng M., Laval J. Ring-opened alkylated guanine is not repaired in Z-DNA. 1984 Aug 30-Sep 5Nature. 310(5980):798–800. doi: 10.1038/310798a0. [DOI] [PubMed] [Google Scholar]
  13. Ramesh N., Shouche Y. S., Brahmachari S. K. Recognition of B and Z forms of DNA by Escherichia coli DNA polymerase I. J Mol Biol. 1986 Aug 20;190(4):635–638. doi: 10.1016/0022-2836(86)90248-2. [DOI] [PubMed] [Google Scholar]
  14. Santella R. M., Grunberger D., Weinstein I. B., Rich A. Induction of the Z conformation in poly(dG-dC).poly(dG-dC) by binding of N-2-acetylaminofluorene to guanine residues. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1451–1455. doi: 10.1073/pnas.78.3.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Soslau G., Parker J., Nelson J. W. Methylation and restriction endonuclease cleavage of linear Z-DNA in the presence of hexamminecobalt (III) ions. Nucleic Acids Res. 1986 Sep 25;14(18):7237–7252. doi: 10.1093/nar/14.18.7237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wallace S. S. AP endonucleases and DNA glycosylases that recognize oxidative DNA damage. Environ Mol Mutagen. 1988;12(4):431–477. doi: 10.1002/em.2860120411. [DOI] [PubMed] [Google Scholar]
  17. Weiss B., Grossman L. Phosphodiesterases involved in DNA repair. Adv Enzymol Relat Areas Mol Biol. 1987;60:1–34. doi: 10.1002/9780470123065.ch1. [DOI] [PubMed] [Google Scholar]
  18. Weiss R. B., Duker N. J. Photoalkylated DNA and ultraviolet-irradiated DNA are incised at cytosines by endonuclease III. Nucleic Acids Res. 1986 Aug 26;14(16):6621–6631. doi: 10.1093/nar/14.16.6621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weiss R. B., Gallagher P. E., Brent T. P., Duker N. J. Cytosine photoproduct-DNA glycosylase in Escherichia coli and cultured human cells. Biochemistry. 1989 Feb 21;28(4):1488–1492. doi: 10.1021/bi00430a010. [DOI] [PubMed] [Google Scholar]
  20. van de Sande J. H., McIntosh L. P., Jovin T. M. Mn2+ and other transition metals at low concentration induce the right-to-left helical transformation of poly[d(G-C)]. EMBO J. 1982;1(7):777–782. doi: 10.1002/j.1460-2075.1982.tb01247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES