Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Jun 25;18(12):3509–3513. doi: 10.1093/nar/18.12.3509

A mammalian temperature-sensitive mutation affecting G1 progression results from a single amino acid substitution in asparagine synthetase.

S S Gong 1, C Basilico 1
PMCID: PMC331004  PMID: 1972978

Abstract

ts11 is a temperature-sensitive (ts) mutant isolated from the BHK-21 Syrian hamster cell line that is blocked in the G1 phase of the cell cycle at the non-permissive temperature (39.5 degrees C). We previously showed that the human gene encoding asparagine synthetase (AS) transformed ts11 cells to a ts+ phenotype and that ts11 cells were auxotrophic for asparagine at 39.5 degrees C. We show here that ts11 cells exhibit a ts phenotype for AS activity, and that the ts11 AS was much heat-labile than the wt enzyme. We have isolated AS cDNAs from wt BHK and ts11 cells and found that wt, but not ts11 AS cDNAs were capable of transformation. The deduced amino acid sequence of Syrian hamster AS showed 95% identity to the human protein as well as the same number of residues. The inability of the ts11 AS cDNAs to transform was due to a single base change, a C to T transition, that would result in the substitution of leucine with phenylalanine at a residue located in the C-terminal fourth of the enzyme. Thus the ts11 mutation identifies a mutated, thermolabile AS.

Full text

PDF
3509

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair G. M., Thompson L. H., Lindl P. A. Six complementation classes of conditionally lethal protein synthesis mutants of CHO cells selected by 3H-amino acid. Somatic Cell Genet. 1978 Jan;4(1):27–44. doi: 10.1007/BF01546491. [DOI] [PubMed] [Google Scholar]
  2. Andrulis I. L., Chen J., Ray P. N. Isolation of human cDNAs for asparagine synthetase and expression in Jensen rat sarcoma cells. Mol Cell Biol. 1987 Jul;7(7):2435–2443. doi: 10.1128/mcb.7.7.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basilico C. Temperature-sensitive mutations in animal cells. Adv Cancer Res. 1977;24:223–266. doi: 10.1016/s0065-230x(08)61016-7. [DOI] [PubMed] [Google Scholar]
  4. Greco A., Gong S. S., Ittmann M., Basilico C. Organization and expression of the cell cycle gene, ts11, that encodes asparagine synthetase. Mol Cell Biol. 1989 Jun;9(6):2350–2359. doi: 10.1128/mcb.9.6.2350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greco A., Ittmann M., Basilico C. Molecular cloning of a gene that is necessary for G1 progression in mammalian cells. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1565–1569. doi: 10.1073/pnas.84.6.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Levitzki A., Stallcup W. B., Koshland D. E., Jr Half-of-the-sites reactivity and the conformational states of cytidine triphosphate synthetase. Biochemistry. 1971 Aug 31;10(18):3371–3378. doi: 10.1021/bi00794a009. [DOI] [PubMed] [Google Scholar]
  7. Luehr C. A., Schuster S. M. A new assay for L-asparagine synthetase. J Biochem Biophys Methods. 1980 Sep;3(3):151–161. doi: 10.1016/0165-022x(80)90014-7. [DOI] [PubMed] [Google Scholar]
  8. Mäntsälä P., Zalkin H. Glutamine amidotransferase function. Replacement of the active-site cysteine in glutamine phosphoribosylpyrophosphate amidotransferase by site-directed mutagenesis. J Biol Chem. 1984 Nov 25;259(22):14230–14236. [PubMed] [Google Scholar]
  9. Mäntsälä P., Zalkin H. Glutamine nucleotide sequence of Saccharomyces cerevisiae ADE4 encoding phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1984 Jul 10;259(13):8478–8484. [PubMed] [Google Scholar]
  10. Okayama H., Berg P. High-efficiency cloning of full-length cDNA. Mol Cell Biol. 1982 Feb;2(2):161–170. doi: 10.1128/mcb.2.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pfeiffer N. E., Mehlhaff P. M., Wylie D. E., Schuster S. M. Topographical separation of the catalytic sites of asparagine synthetase explored with monoclonal antibodies. J Biol Chem. 1987 Aug 25;262(24):11565–11570. [PubMed] [Google Scholar]
  12. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Simchen G. Cell cycle mutants. Annu Rev Genet. 1978;12:161–191. doi: 10.1146/annurev.ge.12.120178.001113. [DOI] [PubMed] [Google Scholar]
  14. Tso J. Y., Hermodson M. A., Zalkin H. Glutamine phosphoribosylpyrophosphate amidotransferase from cloned Escherichia coli purF. NH2-terminal amino acid sequence, identification of the glutamine site, and trace metal analysis. J Biol Chem. 1982 Apr 10;257(7):3532–3536. [PubMed] [Google Scholar]
  15. Tso J. Y., Zalkin H., van Cleemput M., Yanofsky C., Smith J. M. Nucleotide sequence of Escherichia coli purF and deduced amino acid sequence of glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1982 Apr 10;257(7):3525–3531. [PubMed] [Google Scholar]
  16. Uchida S., Sekiguchi T., Nishitani H., Miyauchi K., Ohtsubo M., Nishimoto T. Premature chromosome condensation is induced by a point mutation in the hamster RCC1 gene. Mol Cell Biol. 1990 Feb;10(2):577–584. doi: 10.1128/mcb.10.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vollmer S. J., Switzer R. L., Hermodson M. A., Bower S. G., Zalkin H. The glutamine-utilizing site of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1983 Sep 10;258(17):10582–10585. [PubMed] [Google Scholar]
  18. Walker J. E., Gay N. J., Saraste M., Eberle A. N. DNA sequence around the Escherichia coli unc operon. Completion of the sequence of a 17 kilobase segment containing asnA, oriC, unc, glmS and phoS. Biochem J. 1984 Dec 15;224(3):799–815. doi: 10.1042/bj2240799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zalkin H., Truitt C. D. Characterization of the glutamine site of Escherichia coli guanosine 5'-monophosphate synthetase. J Biol Chem. 1977 Aug 10;252(15):5431–5436. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES