Abstract
Structure and sequence of the human gene for tyrosine aminotransferase (TAT) was determined by analysis of cDNA and genomic clones. The gene extends over 10.9 kbl and consists of 12 exons giving rise to a 2,754 nucleotide long mRNA (excluding the poly(A)tail). The human TAT gene is predicted to code for a 454 amino acid protein of molecular weight 50,399 dalton. The overall sequence identity within the coding region of the human and the previously characterized rat TAT genes is 87% at the nucleotide and 92% at the protein level. A minor human TAT mRNA results from the use of an alternative polyadenylation signal in the 3' exon which is present but not used at the corresponding position in the rat TAT gene. The non-coding region of the 3' exon contains a complete Alu element which is absent in the rat TAT gene but present in apes and old world monkeys. Two functional glucocorticoid response elements (GREs) reside 2.5 kb upstream of the rat TAT gene. The DNA sequence of the corresponding region of the human TAT gene shows the distal GRE mutated and the proximal GRE replaced by Alu elements.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson S. M. Induction of cytosolic tyrosine aminotransferase by dexamethasone in organ culture of fetal human liver. Early Hum Dev. 1982 Apr;6(2):165–169. doi: 10.1016/0378-3782(82)90104-9. [DOI] [PubMed] [Google Scholar]
- Andersson S. M., Pispa J. P. Purification and properties of human liver tyrosine aminotransferase. Clin Chim Acta. 1982 Oct 27;125(2):117–123. doi: 10.1016/0009-8981(82)90188-7. [DOI] [PubMed] [Google Scholar]
- Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
- Becker P. B., Ruppert S., Schütz G. Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell. 1987 Nov 6;51(3):435–443. doi: 10.1016/0092-8674(87)90639-8. [DOI] [PubMed] [Google Scholar]
- Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
- Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
- Chandra T., Stackhouse R., Kidd V. J., Woo S. L. Isolation and sequence characterization of a cDNA clone of human antithrombin III. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1845–1848. doi: 10.1073/pnas.80.7.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Grange T., Guénet C., Dietrich J. B., Chasserot S., Fromont M., Befort N., Jami J., Beck G., Pictet R. Complete complementary DNA of rat tyrosine aminotransferase messenger RNA. Deduction of the primary structure of the enzyme. J Mol Biol. 1985 Jul 20;184(2):347–350. doi: 10.1016/0022-2836(85)90386-9. [DOI] [PubMed] [Google Scholar]
- Grange T., Roux J., Rigaud G., Pictet R. Two remote glucocorticoid responsive units interact cooperatively to promote glucocorticoid induction of rat tyrosine aminotransferase gene expression. Nucleic Acids Res. 1989 Nov 11;17(21):8695–8709. doi: 10.1093/nar/17.21.8695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Granner D. K., Hargrove J. L. Regulation of the synthesis of tyrosine aminotransferase: the relationship to mRNATAT. Mol Cell Biochem. 1983;53-54(1-2):113–128. doi: 10.1007/BF00225249. [DOI] [PubMed] [Google Scholar]
- Hargrove J. L., Scoble H. A., Mathews W. R., Baumstark B. R., Biemann K. The structure of tyrosine aminotransferase. Evidence for domains involved in catalysis and enzyme turnover. J Biol Chem. 1989 Jan 5;264(1):45–53. [PubMed] [Google Scholar]
- Hashimoto S., Schmid W., Schütz G. Transcriptional activation of the rat liver tyrosine aminotransferase gene by cAMP. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6637–6641. doi: 10.1073/pnas.81.21.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jantzen H. M., Strähle U., Gloss B., Stewart F., Schmid W., Boshart M., Miksicek R., Schütz G. Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell. 1987 Apr 10;49(1):29–38. doi: 10.1016/0092-8674(87)90752-5. [DOI] [PubMed] [Google Scholar]
- Kariya Y., Kato K., Hayashizaki Y., Himeno S., Tarui S., Matsubara K. Revision of consensus sequence of human Alu repeats--a review. Gene. 1987;53(1):1–10. doi: 10.1016/0378-1119(87)90087-4. [DOI] [PubMed] [Google Scholar]
- Krayev A. S., Kramerov D. A., Skryabin K. G., Ryskov A. P., Bayev A. A., Georgiev G. P. The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA. Nucleic Acids Res. 1980 Mar 25;8(6):1201–1215. doi: 10.1093/nar/8.6.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
- McLauchlan J., Gaffney D., Whitton J. L., Clements J. B. The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3' termini. Nucleic Acids Res. 1985 Feb 25;13(4):1347–1368. doi: 10.1093/nar/13.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehta P. K., Hale T. I., Christen P. Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins. Eur J Biochem. 1989 Dec 8;186(1-2):249–253. doi: 10.1111/j.1432-1033.1989.tb15202.x. [DOI] [PubMed] [Google Scholar]
- Müller G., Scherer G., Zentgraf H., Ruppert S., Herrmann B., Lehrach H., Schütz G. Isolation, characterization and chromosomal mapping of the mouse tyrosine aminotransferase gene. J Mol Biol. 1985 Aug 5;184(3):367–373. doi: 10.1016/0022-2836(85)90287-6. [DOI] [PubMed] [Google Scholar]
- Natt E., Kao F. T., Rettenmeier R., Scherer G. Assignment of the human tyrosine aminotransferase gene to chromosome 16. Hum Genet. 1986 Mar;72(3):225–228. doi: 10.1007/BF00291882. [DOI] [PubMed] [Google Scholar]
- Natt E., Westphal E. M., Toth-Fejel S. E., Magenis R. E., Buist N. R., Rettenmeier R., Scherer G. Inherited and de novo deletion of the tyrosine aminotransferase gene locus at 16q22.1----q22.3 in a patient with tyrosinemia type II. Hum Genet. 1987 Dec;77(4):352–358. doi: 10.1007/BF00291426. [DOI] [PubMed] [Google Scholar]
- Oddos J., Grange T., Carr K. D., Matthews B., Roux J., Richard-Foy H., Pictet R. Nucleotide sequence of 10 kilobases of rat tyrosine aminotransferase gene 5' flanking region. Nucleic Acids Res. 1989 Nov 11;17(21):8877–8878. doi: 10.1093/nar/17.21.8877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters C. W., Kruse U., Pollwein R., Grzeschik K. H., Sippel A. E. The human lysozyme gene. Sequence organization and chromosomal localization. Eur J Biochem. 1989 Jul 1;182(3):507–516. doi: 10.1111/j.1432-1033.1989.tb14857.x. [DOI] [PubMed] [Google Scholar]
- Renan M. J. Conserved 12-bp element downstream from mRNA polyadenylation sites. Gene. 1987;60(2-3):245–254. doi: 10.1016/0378-1119(87)90233-2. [DOI] [PubMed] [Google Scholar]
- Räihä N. C., Schwartz A. L. Enzyme induction in human fetal liver in organ culture. Enzyme. 1973;15(1):330–339. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherer G., Schmid W., Strange C. M., Röwekamp W., Schütz G. Isolation of cDNA clones coding for rat tyrosine aminotransferase. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7205–7208. doi: 10.1073/pnas.79.23.7205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid E., Schmid W., Jantzen M., Mayer D., Jastorff B., Schütz G. Transcription activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur J Biochem. 1987 Jun 15;165(3):499–506. doi: 10.1111/j.1432-1033.1987.tb11467.x. [DOI] [PubMed] [Google Scholar]
- Shinomiya T., Scherer G., Schmid W., Zentgraf H., Schütz G. Isolation and characterization of the rat tyrosine aminotransferase gene. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1346–1350. doi: 10.1073/pnas.81.5.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sibley C. G., Ahlquist J. E. DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. J Mol Evol. 1987;26(1-2):99–121. doi: 10.1007/BF02111285. [DOI] [PubMed] [Google Scholar]
- Tsuzuki T., Obaru K., Setoyama C., Shimada K. Structural organization of the mouse mitochondrial aspartate aminotransferase gene. J Mol Biol. 1987 Nov 5;198(1):21–31. doi: 10.1016/0022-2836(87)90454-2. [DOI] [PubMed] [Google Scholar]
- Westphal E. M., Burmeister M., Wienker T. F., Lehrach H., Bender K., Scherer G. Tyrosine aminotransferase and chymotrypsinogen B are linked to haptoglobin on human chromosome 16q: comparison of genetic and physical distances. Genomics. 1987 Dec;1(4):313–319. doi: 10.1016/0888-7543(87)90030-9. [DOI] [PubMed] [Google Scholar]
- Westphal E. M., Natt E., Grimm T., Odievre M., Scherer G. The human tyrosine aminotransferase gene: characterization of restriction fragment length polymorphisms and haplotype analysis in a family with tyrosinemia type II. Hum Genet. 1988 Jul;79(3):260–264. doi: 10.1007/BF00366248. [DOI] [PubMed] [Google Scholar]

